Solid-State Nanopore Array: Manufacturing and Applications
Hongshuai Liu
Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical and Materials Engineering, University College Dublin, Dublin, D04 V1W8 Ireland
Search for more papers by this authorQin Zhou
College of Basic Medicine, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, Heilongjiang, 150081 China
Search for more papers by this authorWei Wang
School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, 2006 Xiyuan Ave, Chengdu, Sichuan, 611731 China
Search for more papers by this authorCorresponding Author
Fengzhou Fang
Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical and Materials Engineering, University College Dublin, Dublin, D04 V1W8 Ireland
State Key Laboratory of Precision Measuring Technology and Instruments, Laboratory of Micro/Nano Manufacturing Technology (MNMT), Tianjin University, Tianjin, 300072 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jufan Zhang
Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical and Materials Engineering, University College Dublin, Dublin, D04 V1W8 Ireland
E-mail: [email protected]; [email protected]
Search for more papers by this authorHongshuai Liu
Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical and Materials Engineering, University College Dublin, Dublin, D04 V1W8 Ireland
Search for more papers by this authorQin Zhou
College of Basic Medicine, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, Heilongjiang, 150081 China
Search for more papers by this authorWei Wang
School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, 2006 Xiyuan Ave, Chengdu, Sichuan, 611731 China
Search for more papers by this authorCorresponding Author
Fengzhou Fang
Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical and Materials Engineering, University College Dublin, Dublin, D04 V1W8 Ireland
State Key Laboratory of Precision Measuring Technology and Instruments, Laboratory of Micro/Nano Manufacturing Technology (MNMT), Tianjin University, Tianjin, 300072 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jufan Zhang
Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical and Materials Engineering, University College Dublin, Dublin, D04 V1W8 Ireland
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Nanopore brings extraordinary properties for a variety of potential applications in various industrial sectors. Since manufacturing of solid-state nanopore is first reported in 2001, solid-state nanopore has become a hot topic in the recent years. An increasing number of manufacturing methods have been reported, with continuously decreased sizes from hundreds of nanometers at the beginning to ≈1 nm until recently. To enable more robust, sensitive, and reliable devices required by the industry, researchers have started to explore the possible methods to manufacture nanopore array which presents unprecedented challenges on the fabrication efficiency, accuracy and repeatability, applicable materials, and cost. As a result, the exploration of fabrication of nanopore array is still in the fledging period with various bottlenecks. In this article, a wide range of methods of manufacturing nanopores are summarized along with their achievable morphologies, sizes, inner structures for characterizing the main features, based on which the manufacturing of nanopore array is further addressed. To give a more specific idea on the potential applications of nanopore array, some representative practices are introduced such as DNA/RNA sequencing, energy conversion and storage, water desalination, nanosensors, nanoreactors, and dialysis.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1S. Faucher, N. Aluru, M. Z. Bazant, D. Blankschtein, A. H. Brozena, J. Cumings, J. P. D. Souza, M. Elimelech, R. Epsztein, J. T. Fourkas, A. G. Rajan, H. J. Kulik, A. Levy, A. Majumdar, C. Martin, M. McEldrew, R. P. Misra, A. Noy, T. A. Pham, M. Reed, E. Schwegler, Z. Siwy, Y. H. Wang, M. Strano, J. Phys. Chem. 2019, 123, 21309.
- 2Q. Chen, Z. W. Liu, Sensors 2019, 19, 1886.
- 3T. Deng, M. W. Li, Y. F. Wang, Z. W. Liu, Sci. Bull. 2015, 60, 304.
- 4J. J. Kasianowicz, E. Brandin, D. Branton, D. W. Deamer, Proc. Natl. Acad. Sci. USA 1996, 93, 13770.
- 5M. F. Zhang, T. Chen, Y. K. Liu, J. P. Zhu, J. Q. Liu, Y. C. Wu, ChemNanoMat 2019, 5, 55.
- 6S. P. Surwade, S. N. Smirnov, I. V. Vlassiouk, R. R. Unocic, G. M. Veith, S. Dai, S. M. Mahurin, Nat. Nanotechnol. 2015, 10, 459.
- 7H. P. Zhao, C. L. Wang, R. Vellacheri, M. Zhou, Y. Xu, Q. Fu, M. H. Wu, F. Grote, Y. Lei, Adv. Mater. 2014, 26, 7654.
- 8Z. Chen, H. G. Zhang, J. Electrochem. Soc. 2005, 152, D227.
- 9A. K. Kieninger, K. Forchhammer, I. Maldener, Int. J. Med. Microbiol. 2019, 309, 151303.
- 10H. Kwok, K. Briggs, V. T. Cossa, PLoS One 2014, 9, e92880.
- 11Y. X. Feng, Y. C. Zhang, C. F. Ying, D. Q. Wang, C. L. Du, Genom. Proteom. Bioinform 2015, 13, 4.
- 12Z. S. Yuan, C. Y. Wang, X. Yi, Z. H. Ni, Y. F. Chen, T. Li, Nanoscale Res. Lett. 2018, 13, 56.
- 13L. Xue, H. Yamazaki, R. Ren, M. Wanunu, A. P. Ivanov, J. B. Edel, Nat. Rev. Mater. 2020, 5, 931.
- 14Y. H. He, M. Tsutsui, Y. Zhou, X. S. Miao, NPG Asia Mater. 2021, 13, 48.
- 15J. L. Li, D. Stein, C. McMullan, D. Branton, M. J. Aziz, J. A. Golovchenko, Nature 2001, 412, 166.
- 16I. M. Bacho, F. Scheler, P. Büttner, K. Bley, N. Vogel, J. Bachmann, Nanoscale 2018, 10, 8385.
- 17C. J. Lo, T. Aref, A. Bezryadin, Nanotechnology 2006, 17, 3264.
- 18H. L. He, X. L. Xu, Y. D. Jin, Anal. Chem. 2014, 86, 4815.
- 19L. J. Steinbock, S. Krishnan, R. D. Bulushev, S. Borgeaud, M. Blokesch, L. Feletti, A. Radenovic, Nanoscale 2014, 6, 14380.
- 20W. H. Li, N. A. W. Bell, S. H. Ainsa, V. V. Thacker, A. M. Thackray, R. Bujdoso, U. F. Keyser, ACS Nano 2013, 7, 4129.
- 21S. B. Lee, D. T. Mitchell, L. Trofin, T. K. Nevanen, H. Söderlund, C. R. Martin, Science 2002, 296, 2198.
- 22A. P. Samantilleke, J. O. Carneiro, P. Alpuim, V. Teixeira, T. T. T. Thuy, Nanoporous Alumina Templates: Anodisation and Mechanical Characterisation, Studium Press LLC, Texas, USA 2012.
- 23C. A. Merchant, K. Healy, M. Wanunu, V. Ray, N. Peterman, J. Bartel, M. D. Fischbein, K. Venta, Z. T. Luo, A. T. C. Johnson, M. Drndić, Nano Lett. 2010, 10, 2915.
- 24J. Larkin, R. Henley, D. C. Bell, T. C. Karni, J. K. Rosenstein, M. Wanunu, ACS Nano 2013, 7, 10121.
- 25B. M. Venkatesan, B. Dorvel, S. Yemenicioglu, N. Watkins, I. Petrov, R. Bashir, Adv. Mater. 2009, 21, 2771.
- 26J. H. Yuan, F. Y. He, D. C. Sun, X. H. Xia, Chem. Mater. 2004, 16, 1841.
- 27W. Lee, R. Ji, U. Gösele, K. Nielsch, Nat. Mater. 2006, 5, 741.
- 28H. Masuda, K. Fukuda, Science 1995, 268, 1466.
- 29G. D. Sulka, J. K. Kołodziej, A. Brzózka, M. Jaskuła, Electrochim. Acta 2013, 104, 526.
- 30Z. Siwy, D. Dobrev, R. Neumann, C. Trautmann, K. Voss, Appl. Phys. A 2003, 76, 781.
- 31C. C. Harrell, Y. Choi, L. P. Horne, L. A. Baker, Z. S. Siwy, C. R. Martin, Langmuir 2006, 22, 10837.
- 32P. Y. Apel, Y. E. Korchev, Z. Siwy, R. Spohr, M. Yoshida, Nucl. Instr. Meth. Phys. Res. B 2001, 184, 337.
- 33P. Y. Apel, I. V. Blonskaya, S. N. Dmitriev, O. L. Orelovitch, A. Presz, B. A. Sartowska, Nanotechnology 2007, 18, 305302.
- 34Z. Siwy, A. Fuliński, Phys. Rev. Lett. 2002, 89, 198103.
- 35J. Feng, K. Liu, M. Graf, M. Lihter, R. D. Bulushev, D. Dumcenco, D. T. L. Alexander, D. Krasnozhon, T. Vuletic, A. Kis, A. Radenovic, Nano Lett. 2015, 15, 3431.
- 36I. Yanagi, R. Akahori, T. Hatano, K. I. Takeda, Sci. Rep. 2014, 4, 5000.
- 37J. Gao, W. Gao, D. Feng, H. T. Wang, D. Y. Zhao, L. Jiang, J. Am. Chem. Soc. 2014, 136, 12265.
- 38P. Fürjes, Micromachines 2019, 10, 774.
- 39J. Y. Kim, D. Han, G. M. Crouch, S. R. Kwon, P. W. Bohn, Anal. Chem. 2019, 91, 4568.
- 40M. Y. Wu, D. Krapf, M. Zandbergen, H. Zandbergen, Appl. Phys. Lett. 2005, 87, 113106.
- 41T. Gilboa, E. Zvuloni, A. Zrehen, A. H. Squires, A. Meller, Adv. Funct. Mater. 2020, 30, 1900642.
- 42E. Zvuloni, A. Zrehen, T. Gilboa, A. Meller, ACS Nano 2021, 15, 12189.
- 43Q. Ji, Y. Chen, X. Jiang, L. Ji, K. N. Leung, Formation of Nanopore-Arrays by Plasma-based Thin Film Deposition, March 2005, https://www.osti.gov/biblio/932785.
- 44Y. Chen, Y. H. Chen, J. Y. Long, D. C. Shi, X. Chen, M. X. Hou, J. Gao, H. L. Liu, Y. B. He, B. Fan, C. P. Wong, N. Zhao, Int. J. Extrem. Manuf. 2021, 3, 035104.
- 45A. L. Biance, J. Gierak, É. Bourhis, A. Madouri, X. Lafosse, G. Patriarche, G. Oukhaled, C. Ulysse, J. C. Galas, Y. Chen, L. Auvray, Microelectron. Eng. 2006, 83, 1474.
- 46A. Morin, D. Lucot, A. Ouerghi, G. Patriarche, E. Bourhis, A. Madouri, C. Ulysse, J. Pelta, L. Auvray, R. Jede, L. Bruchhaus, J. Gierak, Microelectron. Eng. 2012, 97, 311.
- 47C. J. Russo, J. A. Golovchenko, Proc. Natl. Acad. Sci. USA 2012, 109, 5953.
- 48N. N. N. M. Ibrahim, A. M. Hashim, Mater. Lett. 2021, 305, 130740.
- 49A. A. Tseng, Small 2005, 1, 924.
- 50D. Winston, V. R. Manfrinato, S. M. Nicaise, L. L. Cheong, H. G. Duan, D. Ferranti, J. Marshman, S. McVey, L. Stern, J. Notte, K. K. Berggren, Nano Lett. 2011, 11, 4343.
- 51D. C. Tanugi, N. Yao, J. Appl. Phys. 2008, 104, 063504.
- 52R. Timilsina, S. Tan, R. Livengood, P. D. Rack, Nanotechnology 2014, 25, 485704.
- 53D. Y. Xia, S. McVey, C. Huynh, W. Kuehn, ACS Appl. Mater. Interfaces 2019, 11, 5509.
- 54R. Livengood, S. Tan, Y. Greenzweig, J. Vac. Sci. Technol. B 2009, 27, 3244.
- 55F. Z. Fang, Int. J. Extrem. Manuf. 2020, 2, 030201.
10.1088/2631-7990/aba495 Google Scholar
- 56F. Z. Fang, X. D. Zhang, W. Gao, Y. B. Guo, G. Byrne, H. N. Hansen, CIRP Ann. Manuf. Technol. 2007, 66, 683.
- 57Z. S. Yuan, X. Lei, C. Y. Wang, Int. J. Mach. Tools Manuf. 2020, 159, 103623.
- 58J. Li, C. Fan, J. Ding, S. Xue, Y. Chen, Q. Li, H. Wang, X. Zhang, Sci. Rep. 2017, 7, 39484.
- 59W. Asghar, A. Ilyas, J. A. Billo, S. M. Iqbal, Nanoscale Res. Lett. 2011, 6, 372.
- 60P. Chen, T. Mitsui, D. B. Farmer, J. Golovchenko, R. G. Gordon, D. Branton, Nano Lett. 2004, 4, 1333.
- 61A. Spende, N. Sobel, M. Lukas, R. Zierold, J. C. Riedl, L. Gura, I. Schubert, J. M. M. Moreno, K. Nielsch, B. Stühn, C. Hess, C. Trautmann, M. E. T. Molares, Nanotechnology 2015, 26, 335301.
- 62Y. F. Wang, T. Deng, Q. Chen, F. Liang, Z. W. Liu, Nanotechnology 2016, 27, 254005.
- 63M. Ayub, A. Ivanov, J. Hong, P. Kuhn, E. Instuli, J. B. Edel, T. Albrecht, J. Phys.: Condens. Matter 2010, 22, 454128.
- 64S. Hartwig, C. P. Klages, J. Electrochem. Soc. 2014, 161, D243.
- 65F. Hui, B. Li, P. G. He, J. Hu, Y. Z. Fang, Electrochem. Commun. 2009, 11, 639.
- 66J. Elias, M. P. Wojtan, R. Erni, C. Niederberger, F. Sauvage, M. Thevenin, J. Michler, L. Philippe, Nano Energy 2012, 1, 742.
- 67H. Tarábková, P. Janda, Langmuir 2016, 32, 11221.
- 68C. L. Li, M. Iqbal, J. J. Lin, X. L. Luo, B. Jiang, V. Malgras, K. C. W. Wu, J. Kim, Y. Yamauchi, Acc. Chem. Res. 2018, 51, 1764.
- 69R. Beri, M. K. Kushwaha, N. Grover, Int. J. Res. Eng. Technol. 2017, 4, 778.
- 70S. Ateş, E. Baran, B. Yazıcı, Thin Solid Films 2018, 648, 94.
- 71M. S. Hunter, P. Fowle, J. Electrochem. Soc. 1954, 101, 514.
- 72G. C. Wood, J. P. O'Sullivan, B. Vaszko, J. Electrochem. Soc. 1968, 115, 618.
- 73F. A. Bruera, G. R. Kramer, M. L. Vera, A. E. Ares, Coatings 2019, 9, 115.
- 74N. Vogel, S. Goerres, K. Landfester, C. K. Weiss, Macromol. Chem. Phys. 2011, 212, 1719.
- 75S. R. Park, H. B. Peng, X. S. S. Ling, Small 2007, 3, 116.
- 76Q, C., Y. Wang, T. Deng, Z. W. Liu, Nanotechnology 2018, 29, 085301.
- 77T. Deng, J. Chen, C. N. Wu, Z. W. Liu, ECS J. Solid State Sci. Technol. 2013, 2, P419.
- 78T. Deng, M. W. Li, J. Chen, Y. F. Wang, Z. W. Liu, J. Phys. Chem. C 2014, 118, 18110.
- 79T. Deng, J. Chen, M. W. Li, Y. F. Wang, C. X. Zhao, Z. H. Zhang, Z. W. Liu, Nanotechnology 2013, 24, 505303.
- 80V. Lehmann, Electrochemistry of Silicon: Instrumentation, Science, Materials and Applications, Wiley-VCH, Weinheim 2002.
10.1002/3527600272 Google Scholar
- 81X. G. Zhang, Electrochemistry of Silicon and Its Oxide, Springer, New York 2001.
- 82K. Tsujino, M. Matsumura, Adv. Mater. 2005, 17, 1045.
- 83F. Bensliman, N. Mizuta, M. Matsumura, J. Electroanal. Chem. 2004, 568, 353.
- 84K. Tsujino, M. Electrochim. Acta 2007, 53, 28.
- 85N. V. Toan, N. Inomata, M. Toda, T. Ono, Nanotechnology 2018, 29, 195301.
- 86N. V. Toan, M. Toda, T. Ono, IEEE Trans. Nanotechnol. 2017, 16, 567.
- 87H. Han, Z. P. Huang, W. Lee, Nano Today 2014, 9, 271.
- 88X. Li, P. W. Bonn, Appl. Phys. Lett. 2000, 77, 2572.
- 89P. F. Zhang, R. Jia, K. Tao, S. Jiang, X. W. Dai, H. C. Sun, Z. Jin, Z. Y. Ji, X. Y. Liu, C. Y. Zhao, H. Z. Liu, Y. P. Zhao, L. Tang, Sol. Energy Mater. Sol. Cells 2019, 200, 109983.
- 90J. Wang, Y. Hu, H. C. Zhao, H. X. Fu, Y. C. Wang, C. L. Huo, K. Q. Peng, Adv. Mater. Interfaces 2018, 5, 1801132.
- 91K. Q. Peng, A. J. Lu, R. Q. Zhang, S. T. Lee, Adv. Funct. Mater. 2008, 18, 3026.
- 92H. Zheng, M. G. Han, P. Zheng, L. Zheng, H. B. Qin, L. J. Deng, Mater. Lett. 2014, 118, 146.
- 93Y. T. Lu, A. R. Barron, J. Mater. Chem. 2014, 2, 12043.
- 94T. Yasuda, Y. Maeda, K. Matsuzaki, Y. Okazaki, R. Oda, A. Kitada, K. Murase, K. Fukami, ACS Appl. Mater. Interfaces 2019, 11, 48604.
- 95O. M. Piciu, M. W. Docter, M. C. V. D. Krogt, Y. Garini, I. T. Young, P. M. Sarro, A. Bossche, Proc. Inst. Mech. Eng., Part N 2007, 221, 107.
- 96A. B. Dahlin, M. Mapar, K. L. Xiong, F. Mazzotta, F. Höök, T. Sannomiya, Adv. Opt. Mater. 2014, 2, 556.
- 97B. Malekian, K. Xiong, E. S. H. Kang, J. Andersson, G. Emilsson, M. Rommel, T. Sannomiya, M. P. Jonsson, A. Dahlin, Nanoscale Adv. 2019, 1, 4282.
- 98D. P. Depledge, K. P. Srinivas, T. Sadaoka, D. Bready, Y. Mori, D. G. Placantonakis, I. Mohr, A. C. Wilson, Nat. Commun. 2019, 10, 754.
- 99K. Venta, G. Shemer, M. Puster, J. A. R. Manzo, A. Balan, J. K. Rosenstein, K. Shepard, M. Drndić, ACS Nano 2013, 7, 4629.
- 100P. Tripathi, M. Chandler, C. M. Maffeo, A. Fallahi, A. Makhamreh, J. Halman, A. Aksimentiev, K. A. Afonin, M. Wanunu, Nanoscale 2022, 14, 6866.
- 101L. Liu, K. Zhang, Environ. Sci. Technol. 2018, 52, 5884.
- 102K. Xiao, L. P. Wen, L. Jiang, Small 2016, 12, 2810.
- 103Z. F. Tang, D. H. Zhang, W. W. Cui, H. Zhang, W. Pang, X. X. Duan, Nanomater. Nanotechnol. 2016, 6, 35.
- 104C. Dekker, Nat. Nanotechnol. 2007, 2, 209.
- 105H. B. Zhang, Q. Zhao, Z. P. Tang, S. Liu, Q. T. Li, Z. C. Fan, F. H. Yang, L. P. You, X. M. Li, J. M. Zhang, D. P. Yu, Small 2013, 9, 4112.
- 106R. Akahori, T. Haga, T. Hatano, I. Yanagi, T. Ohura, H. Hamamura, T. Iwasaki, T. Yokoi, T. Anazawa, Nanotechnology 2014, 25, 275501.
- 107M. Wanunu, T. Dadosh, V. Ray, J. M. Jin, L. McReynolds, M. Drndić, Nat. Nanotechnol. 2010, 5, 807.
- 108J. D. Feng, K. Liu, R. D. Bulushev, S. Khlybov, D. Dumcenco, A. Kis, A. Radenovic, Nat. Nanotechnol. 2015, 10, 1070.
- 109M. H. Lee, A. Kumar, K. B. Park, S. Y. Cho, H. M. Kim, M. C. Lim, Y. R. Kim, K. B. Kim, Sci. Rep. 2014, 4, 7448.
- 110J. Comer, V. Dimitrov, Q. Zhao, G. Timp, A. Aksimentiev, Biophys. J. 2009, 96, 593.
- 111Q. Zhao, J. Comer, V. Dimitrov, S. Yemenicioglu, A. Aksimentiev, G. Timp, Nucl. Acids Res. 2008, 36, 1532.
- 112D. J. Niedzwiecki, R. Iyer, P. N. Borer, L. Movileanu, ACS Nano 2013, 7, 3341.
- 113M. Wanunu, S. Bhattacharya, Y. Xie, Y. Tor, A. Aksimentiev, M. Drndic, ACS Nano 2011, 5, 9345.
- 114M. J. Kim, B. McNally, K. Murata, A. Meller, Nanotechnology 2007, 18, 205302.
- 115F. Traversi, C. Raillon, S. M. Benameur, K. Liu, S. Khlybov, M. Tosun, D. Krasnozhon, A. Kis, A. Radenovic, Nat. Nanotechnol. 2013, 8, 939.
- 116S. Liu, B. Lu, Q. Zhao, J. Li, T. Gao, Y. B. Chen, Y. F. Zhang, Z. F. Liu, Z. C. Fan, F. H. Yang, L. P. You, D. P. Yu, Adv. Mater. 2013, 25, 4549.
- 117A. B. Farimani, K. Min, N. R. Aluru, ACS Nano 2014, 8, 7914.
- 118E. Paulechka, T. A. Wassenaar, K. Kroenlein, A. Kazakov, A. Smolyanitsky, Nanoscale 2016, 8, 1861.
- 119A. Wasfi, F. Awwad, A. I. Ayesh, Biosens. Bioelectron. 2018, 119, 191.
- 120B. M. Venkatesan, R. Bashir, Nanopores, Springer, Boston, MA, 2011.
10.1007/978-1-4419-8252-0_1 Google Scholar
- 121U. F. Keyser, J. R. Soc. Interface 2011, 8, 1369.
- 122Q. Liu, L. Fang, G. L. Yu, D. P. Wang, C. L. Xiao, K. Wang, Nat. Commun. 2019, 10, 2449.
- 123N. Cardozo, K. Zhang, K. Doroschak, A. Nguyen, Z. Siddiqui, N. Bogard, K. Strauss, L. Ceze, J. Nivala, Nat. Biotechnol. 2022, 40, 42.
- 124K. Misiunas, N. Ermann, U. F. Keyser, Nano Lett. 2018, 18, 4040.
- 125R. Y. Henley, B. A. Ashcroft, I. Farrell, B. S. Cooperman, S. M. Lindsay, M. Wanunu, Nano Lett. 2016, 16, 138.
- 126Z. X. Wei, Y. L. Ying, M. Y. Li, J. Yang, J. L. Zhou, H. F. Wang, B. Y. Yan, Y. T. Long, Anal. Chem. 2019, 91, 10033.
- 127Y. J. Zhou, Z. D. Wang, C. F. Zheng, Q. Fu, M. H. Wu, H. P. Zhao, Y. Lei, Chem. Eng. Sci. 2022, 247, 117081.
- 128L. L. Wang, B. T. Xu, X. Y. Zhao, X. J. Li, S. Han, J. B. Jiang, Energy Fuels 2020, 34, 8956.
- 129K. Wu, B. J. Geng, C. Zhang, W. W. Shen, D. W. Yang, Z. Li, Z. B. Yang, D. Y. Pan, J. Alloys Compd. 2020, 820, 153296.
- 130S. S. Tang, B. Ouyang, H. Tan, W. Q. Zhou, Z. X. Ma, Y. Q. Zhang, Electrochim. Acta 2020, 362, 137222.
- 131J. W. Shen, J. C. Li, F. Liu, L. Zhang, L. J. Liang, H. B. Wang, J. Y. Wu, J. Membr. Sci. 2020, 595, 117611.
- 132K. A. Mahmoud, B. Mansoor, A. Mansour, M. Khraisheh, Desalination 2015, 356, 208.
- 133C. Q. Zhu, H. Li, X. C. Zeng, E. G. Wang, S. Meng, Sci. Rep. 2013, 3, 3163.
- 134D. Fologea, B. Ledden, D. S. McNabb, J. L. Li, Appl. Phys. Lett. 2007, 91, 053901.
- 135J. Larkin, R. Y. Henley, M. Muthukumar, J. K. Rosenstein, M. Wanunu, Biophys. J. 2014, 106, 696.
- 136M. M. Marshall, J. Ruzicka, O. K. Zahid, V. C. Henrich, E. W. Taylor, A. R. Hall, Langmuir 2015, 31, 4582.
- 137D. A. Holden, G. Hendrickson, L. A. Lyon, H. S. White, J. Phys. Chem. C 2011, 115, 2999.
- 138W. J. Lan, D. A. Holden, B. Zhang, H. S. White, Anal. Chem. 2011, 83, 3840.
- 139M. F. Zhang, T. Chen, Y. K. Liu, J. L. Zhang, H. R. Sun, J. Yang, J. P. Zhu, J. Q. Liu, Y. C. Wu, ACS Sens. 2018, 3, 2446.
- 140S. S. Choi, S. J. Oh, Y. M. Lee, H. T. Kim, S. B. Choi, B. S. Bae, J. Electrochem. Soc. 2020, 167, 027503.
- 141E. T. Acar, S. F. Buchsbaum, C. Combs, F. Fornasiero, Z. S. Siwy, Sci. Adv. 2019, 5, 2568.
- 142G. M. Roozbahani, X. H. Chen, Y. W. Zhang, L. Wang, X. Y. Guan, Small Methods 2020, 4, 2000266.
- 143G. Jágerszki, Á. Takács, I. Bitter, R. E. Gyurcsányi, Angew. Chem., Int. Ed. 2011, 50, 1656.
- 144S. H. Petrosko, R. Johnson, H. White, C. A. Mirkin, J. Am. Chem. Soc. 2016, 138, 7443.
- 145K. Venta, M. Wanunu, M. Drndić, Nano Lett. 2013, 13, 423.
- 146A. Zalineeva, A. Serov, M. Padilla, U. Martinez, K. Artyushkova, S. Baranton, C. Coutanceau, P. B. Atanassov, J. Am. Chem. Soc. 2014, 136, 3937.
- 147L. Mi, J. C. Yu, F. He, L. Jiang, Y. F. Wu, L. J. Yang, X. F. Han, Y. Li, A. Liu, W. Wei, Y. J. Zhang, Y. Tian, S. Q. Liu, L. Jiang, J. Am. Chem. Soc. 2017, 139, 10441.
- 148M. A. Astle, A. Weilhard, G. A. Rance, T. M. LeMercier, C. T. Stoppiello, L. T. Norman, J. A. Fernandes, A. N. Khlobystov, ACS Appl. Nano Mater. 2022, 5, 2075.
- 149Y. S. Tang, Y. C. Tsai, T. W. Chen, S. Y. Li, Membranes 2022, 12, 177.
- 150W. H. Fissell, A. Dubnisheva, A. N. Eldridge, A. J. Fleischman, A. L. Zydney, S. Roy, J. Membr. Sci. 2009, 326, 58.
- 151A. T. Conlisk, S. Datta, W. H. Fissell, S. Roy, Ann. Biomed. Eng. 2009, 37, 722.
- 152F. W. Yunus, N. M. A. Jamaludin, M. R. Buyong, J. Yunas, A. H. A. Gafor, B. Y. Majlis, A. A. Hamzah, J. Microelectromech. Syst. 2022, https://doi.org/10.1109/JMEMS.2022.3213257.
- 153S. P. Ding, D. Wang, X. F. Wang, Sep. Purif. Technol. 2022, 301, 122033.
- 154B. E. Logan, M. Elimelech, Nature 2012, 488, 313.
- 155G. Z. Ramon, B. J. Feinberg, E. M. V. Hoek, Energy Environ. Sci. 2011, 4, 4423.
- 156Z. J. Jia, B. G. Wang, S. Q. Song, Y. S. Fan, Renewable Sustainable Energy Rev. 2014, 31, 91.
- 157J. D. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco, M. Heiranian, V. Nandigana, N. R. Aluru, A. Kis, A. Radenovic, Nature 2016, 536, 197.
- 158G. Laucirica, A. G. Albesa, M. E. Toimil-Molares, C. Trautmann, W. A. Marmisollé, O. Azzaroni, Nano Energy 2020, 71, 104612.
- 159Y. J. Fu, X. Guo, Y. H. Wang, X. W. Wang, J. M. Xue, Nano Energy 2019, 57, 783.
- 160W. S. Li, L. Liang, S. J. Zhao, S. Zhang, J. M. Xue, J. Appl. Phys. 2013, 114, 23404.
- 161P. Wang, J. Wang, F. Fang, Nanomanuf. Metrol. 2021, 4, 216.
- 162F. Fang, J. Manuf. Syst. 2022, 63, 504.
- 163F. Fang, X. Zhang, W. Gao, Y. Guo, G. Byrne, H. N. Hansen, CIRP Ann. Manuf. Technol. 2017, 66, 683.