Enhancing Tungsten Oxide Gasochromism with Noble Metal Nanoparticles: The Importance of the Interface
Alessandro Longato
Department of Industrial Engineering, University of Padova and INSTM, Via Marzolo, 9, Padova, 35131 Italy
Search for more papers by this authorMirko Vanzan
Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, 35131 Italy
Search for more papers by this authorElena Colusso
Department of Industrial Engineering, University of Padova and INSTM, Via Marzolo, 9, Padova, 35131 Italy
Search for more papers by this authorStefano Corni
Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, 35131 Italy
Center S3, CNR Institute of Nanoscience, Via Campi 213/A, Modena, 41125 Italy
Search for more papers by this authorCorresponding Author
Alessandro Martucci
Department of Industrial Engineering, University of Padova and INSTM, Via Marzolo, 9, Padova, 35131 Italy
E-mail: [email protected]
Search for more papers by this authorAlessandro Longato
Department of Industrial Engineering, University of Padova and INSTM, Via Marzolo, 9, Padova, 35131 Italy
Search for more papers by this authorMirko Vanzan
Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, 35131 Italy
Search for more papers by this authorElena Colusso
Department of Industrial Engineering, University of Padova and INSTM, Via Marzolo, 9, Padova, 35131 Italy
Search for more papers by this authorStefano Corni
Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, 35131 Italy
Center S3, CNR Institute of Nanoscience, Via Campi 213/A, Modena, 41125 Italy
Search for more papers by this authorCorresponding Author
Alessandro Martucci
Department of Industrial Engineering, University of Padova and INSTM, Via Marzolo, 9, Padova, 35131 Italy
E-mail: [email protected]
Search for more papers by this authorAbstract
Crystalline tungsten trioxide (WO3) thin films covered by noble metal (gold and platinum) nanoparticles are synthesized via wet chemistry and used as optical sensors for gaseous hydrogen. Sensing performances are strongly influenced by the catalyst used, with platinum (Pt) resulting as best. Surprisingly, it is found that gold (Au) can provide remarkable sensing activity that tuned out to be strongly dependent on the nanoparticle size: devices sensitized with smaller nanoparticles display better H2 sensing performance. Computational insight based on density functional theory calculations suggested that this can be related to processes occurring specifically at the Au nanoparticle-WO3 interface (whose extent is in fact dependent on the nanoparticle size), where the hydrogen dissociative adsorption turns out to be possible. While both experiments and calculations single out Pt as better than Au for sensing, the present work reveals how an exquisitely nanoscopic effect can yield unexpected sensing performance for Au on WO3, and how these performances can be tuned by controlling the nanoscale features of the system.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202205522-sup-0001-SuppMat.pdf889 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Gillet, K. Aguir, C. Lemire, E. Gillet, K. Schierbaum, Thin Solid Films 2004, 467, 239.
- 2A. Azens, C. Granqvist, J. Solid State Electrochem. 2003, 7, 64.
- 3G. A. Niklasson, C. G. Granqvist, J. Mater. Chem. 2007, 17, 127.
- 4A. J. More, R. S. Patil, D. S. Dalavi, S. S. Mali, C. K. Hong, M. G. Gang, J. H. Kim, P. S. Patil, Mater. Lett. 2014, 134, 298.
- 5Z. G. Zhao, M. Miyauchi, Angew. Chem., Int. Ed. 2008, 47, 7051.
- 6R. Abe, H. Takami, N. Murakami, B. Ohtani, J. Am. Chem. Soc. 2008, 130, 7780.
- 7S. H. Wang, T. C. Chou, C. C. Liu, Sens. Actuators, B 2003, 94, 343.
- 8A. Ponzoni, E. Comini, G. Sberveglieri, J. Zhou, S. Z. Deng, N. S. Xu, Y. Ding, Z. L. Wang, Appl. Phys. Lett. 2006, 88, 203101.
- 9C. S. Rout, M. Hegde, C. N. R. Rao, Sens. Actuators, B 2008, 128, 488.
- 10D. Zappa, A. Bertuna, E. Comini, M. Molinari, N. Poli, G. Sberveglieri, Anal. Methods 2015, 7, 2203.
- 11A. Staerz, S. Somacescu, M. Epifani, T. Kida, U. Weimar, N. Barsan, ACS Sens. 2020, 5, 1624.
- 12H. Zheng, J. Z. Ou, M. S. Strano, R. B. Kaner, A. Mitchell, K. Kalantar-Zadeh, Adv. Funct. Mater. 2011, 21, 2175.
- 13V. Wittwer, M. Datz, J. Ell, A. Georg, W. Graf, G. Walze, Sol. Energy Mater. Sol. Cells 2004, 84, 305.
- 14A. Georg, W. Graf, R. Neumann, V. Wittwer, Solid State Ionics 2000, 127, 319.
- 15S. H. Lee, H. M. Cheong, P. Liu, D. Smith, C. E. Tracy, A. Mascarenhas, J. R. Pitts, S. K. Deb, Electrochim. Acta 2001, 46, 1995.
- 16C. H. Hsu, C. C. Chang, C. M. Tseng, C. C. Chan, W. H. Chao, Y. R. Wu, M. H. Wen, Y. T. Hsieh, Y. C. Wang, C. L. Chen, M. J. Wang, M. K. Wu, Sens. Actuators, B 2013, 186, 193.
- 17M. Ando, R. Chabicovsky, M. Haruta, Sens. Actuators, B 2001, 76, 13.
- 18S. Amrehn, X. Wu, T. Wagner, ACS Sens. 2018, 3, 191.
- 19A. Mirzaei, J. H. Kim, H. W. Kim, S. S. Kim, Appl. Sci. 2019, 9, 1775.
- 20W. C. Hsu, C. C. Chan, C. H. Peng, C. C. Chang, Thin Solid Films 2007, 516, 407.
- 21Y. Yamaguchi, Y. Emoto, T. Kineri, M. Fujimoto, H. Mae, A. Yasumori, K. Nishio, Ionics 2012, 18, 449.
- 22A. M. Oliveira, R. R. Beswick, Y. Yan, Curr. Opin. Chem. Eng. 2021, 33, 100701.
- 23Intergovernmental Panel on Climate Change., IPCC's Sixth Assessment Report, IPCC, Geneva, Switzerland 2021.
- 24T. Hübert, L. Boon-Brett, W. Buttner, Sensors for Safety and Process Control in Hydrogen Technologies (Eds.: B. Jones, H. Huang), CRC Press Inc, Boca Raton, FL 2016.
- 25A. Boudiba, P. Roussel, C. Zhang, M. G. Olivier, R. Snyders, M. Debliquy, Sens. Actuators, B 2013, 187, 84.
- 26H. Chen, N. Xu, S. Deng, D. Lu, Z. Li, J. Zhou, J. Chen, Nanotechnology 2007, 18, 205701.
- 27Y. Xi, Q. Zhang, H. Cheng, J. Phys. Chem. C 2014, 118, 494.
- 28T. Vogt, P. M. Woodward, B. A. Hunter, J. Solid State Chem. 1999, 144, 209.
- 29E. K. H. Salje, S. Rehmann, F. Pobell, D. Morris, K. S. Knight, T. Herrmannsdörfer, M. T. Dove, J. Phys.: Condens. Matter 1997, 9, 6563.
- 30G. Frens, Nat. Phys. Sci. 1973, 241, 20.
- 31T. Herricks, J. Chen, Y. Xia, Nano Lett. 2004, 4, 2367.
- 32J. S. Bradley, Clusters and Colloids: from Theory to Application (Ed.: G. Schmid), VCH, Weinheim, 1994.
- 33P. Mulvaney, Langmuir 1996, 12, 788.
- 34M. Green, Z. Hussain, J. Appl. Phys. 1991, 69, 7788.
- 35Z. Hussain, Appl. Opt. 2018, 57, 5720.
- 36E. D. Gaspera, A. Martucci, Sensors 2015, 15, 16910.
- 37N. C. Bigall, T. Ha, M. Klose, P. Simon, L. M. Eng, A. Eychmuller, Nano Lett. 2008, 8, 4588.
- 38E. D. Gaspera, M. Bersani, G. Mattei, T. L. Nguyen, P. Mulvaney, A. Martucci, Nanoscale 2012, 4, 5972.
- 39B. Poelsema, G. Mechtersheimer, G. Cosma, Surf. Sci. 1981, 111, 519.
- 40P. R. Norton, J. A. Davies, T. E. Jackman, Surf. Sci. 1982, 121, 103.
- 41K. Christmann, G. Ertl, T. Pignet, Surf. Sci. 1976, 54, 365.
- 42Z. Dongping, J. Velmurugan, M. V. Mirkin, J. Am. Chem. Soc. 2009, 131, 14756.
- 43P. Kraus, I. Frank, Int. J. Quantum Chem. 2017, 117, e25407.
- 44Q. Shi, R. Sun, Comput. Theor. Chem. 2017, 1106, 43.
- 45L. Yan, Y. Sun, Y. Yamamoto, S. Kasamatsu, I. Hamada, O. Sugino, J. Chem. Phys. 2018, 149, 164702.
- 46B. Hammer, J. K. Nørskov, Nature 1995, 376, 238.
- 47A. Corma, M. Boronat, S. González, F. Illas, Chem. Commun. 2007, 3371.
- 48D. R. Aireddy, K. Ding, ACS Catal. 2022, 12, 4707.
- 49K. I. Shimizu, Y. Miyamoto, T. Kawasaki, T. Tanji, Y. Tai, A. Satsuma, J. Phys. Chem. C 2009, 113, 17803.
- 50R. Juárez, S. F. Parker, P. Concepción, A. Corma, H. García, Chem. Sci. 2010, 1, 731.
- 51T. Whittaker, K. B. S. Kumar, C. Peterson, M. N. Pollock, L. C. Grabow, B. D. Chandler, J. Am. Chem. Soc. 2018, 140, 16469.
- 52Q. Zhang, F. W. Tang, Z. Zhao, Z. R. Nie, X. Y. Song, J. Mater. Sci. Technol. 2022, 117, 23.
- 53J. Wellendorff, T. L. Silbaugh, D. Garcia-Pintos, J. K. Nørskov, T. Bligaard, F. Studt, C. T. Campbell, Surf. Sci. 2015, 640, 36.
- 54Y. Bai, B. W. J. Chen, G. Peng, M. Mavrikakis, Catal. Sci. Technol. 2018, 8, 3321.
- 55T. Zheng, W. Sang, Z. He, Q. Wei, B. Chen, H. Li, C. Cao, R. Huang, X. Yan, B. Pan, S. Zhou, J. Zeng, Nano Lett. 2017, 17, 7968.
- 56L. Luza, C. P. Rambor, A. Gual, J. Alves Fernandes, D. Eberhardt, J. Dupont, ACS Catal. 2017, 7, 2791.
- 57G. Henkelman, A. Arnaldsson, H. Jónsson, Comput. Mater. Sci. 2006, 36, 354.
- 58E. Sanville, S. D. K. Kenny, R. Smith, G. Henkelman, J. Comput. Chem. 2007, 28, 899.
- 59W. Tang, E. Sanville, G. Henkelman, J. Phys.: Condens. Matter 2009, 21, 084204.
- 60G. Pacchioni, Phys. Chem. Chem. Phys. 2013, 15, 1737.
- 61S. Tosoni, G. Pacchioni, ChemCatChem 2019, 11, 73.
- 62G. Pacchioni, H. J. Freund, Chem. Soc. Rev. 2018, 47, 8474.
- 63A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed., John Wiley and Sons, Inc., Hoboken, NJ 2001.
- 64Y. Zhang, O. Pluchery, L. Caillard, A. F. Lamic-Humblot, S. Casale, Y. J. Chabal, M. Salmeron, Nano Lett. 2015, 15, 51.
- 65L. Liu, A. Corma, Chem. Rev. 2018, 118, 4981.
- 66K. J. Taylor, C. L. Pettiette-Hall, O. Cheshnovsky, R. E. Smalley, J. Chem. Phys. 1992, 96, 3319.
- 67G. Halek, I. D. Baikie, H. Teterycz, P. Halek, P. Suchorska-Woźniak, K. Wiśniewski, Sens. Actuators, B 2013, 187, 379.
- 68X. Zhang, X. Ren, Z. Xiao, Y. Huang, Results Phys. 2019, 15, 102670.
- 69Y. Maeda, M. Kohyama, e-J. Surf. Sci. Nanotechnol. 2012, 10, 59.
- 70A. S. Patel, A. Kumar, T. Mohanty, J. Nanosci. Nanotechnol. 2013, 13, 8217.
- 71S. Zou, H. Yokoyama, Y. Sugawara, Y. J. Li, J. Phys. Chem. C 2020, 124, 21641.
- 72K. B. Sravan Kumar, T. N. Whittaker, C. Peterson, L. C. Grabow, B. D. Chandler, J. Am. Chem. Soc. 2020, 142, 5760.
- 73W. Wan, X. Nie, M. J. Janik, C. Song, X. Guo, J. Phys. Chem. C 2018, 122, 17895.
- 74F. Wang, C. Di Valentin, G. Pacchioni, J. Phys. Chem. C 2012, 116, 10672.
- 75P. Jiang, Y. Xiao, W. Liu, X. Yu, Results Phys. 2019, 12, 896.
- 76H. Kim, M. Son, S. H. Ahn, C. S. Lee, Curr. Appl. Phys. 2020, 20, 782.
- 77M. Alsawafta, Y. M. Golestani, T. Phonemac, S. Badilescu, V. Stancovski, V. Van Truong, J. Electrochem. Soc. 2014, 161, H276.
- 78B. Yang, P. R. F. Barnes, W. Bertram, V. Luca, J. Mater. Chem. 2007, 17, 2722.
- 79E. Lassner, W.-D. Schubert, Tungsten; properties, chemistry, technology of the element, alloys, and chemical compounds, Kluwer Academic/Plenum Publishers, New York, 1999.
10.1007/978-1-4615-4907-9 Google Scholar
- 80B. V. Enustun, J. Turkevich, J. Am. Chem. Soc. 1963, 85, 3317.
- 81M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, J. Chem. Soc., Chem. Commun. 1994, 7, 801.
- 82E. Hao, T. Lian, Chem. Mater. 2000, 12, 3392.
- 83D. P. Kulikova, A. Dobronosova, V. Kornienko, I. Nechepurenko, V. Dorofeenko, Opt. Express 2020, 28, 32049.
- 84B. Kamp, R. Merkle, J. Maier, Sens. Actuators, B 2001, 77, 534.
- 85F. Hernandez-Ramirez, J. D. Prades, A. Tarancon, S. Barth, O. Casals, R. Jimenez-Diaz, E. Pellicer, J. Rodriguez, J. R. Morante, M. A. Juli, S. Mathur, A. Romano-Rodriguez, Adv. Funct. Mater. 2008, 18, 2990.
- 86P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, G. Fratesi, S. De Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, J. Phys.: Condens. Matter 2009, 21, 395502.
- 87P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno, M. Marsil, L. Paulatto, D. Rocca, J. Phys.: Condens. Matter 2017, 29, 465901.
- 88J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 89M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, B. I. Lundqvist, Phys. Rev. Lett. 2004, 92, 22.
- 90M. Rosa, S. Corni, R. Di Felice, Phys. Rev. B 2014, 90, 125448.
- 91S. Gautier, S. N. Steinmann, C. Michel, P. Fleurat-Lessard, P. Sautet, Phys. Chem. Chem. Phys. 2015, 17, 28921.
- 92J. B. A. Davis, F. Baletto, R. L. Johnston, J. Phys. Chem. A 2015, 119, 9703.
- 93 The Materials Project, Materials Data on WO3 (SG:14) by Materials Project, 2014. Web. https://doi.org/10.17188/1194174, (accessed: May 2020).
10.17188/1194174 Google Scholar
- 94H. Zhang, Y. Wang, X. Zhu, Y. Li, W. Cai, Sens. Actuators, B 2019, 280, 192.
- 95S. Zeb, G. Sun, Y. Nie, Y. Cui, X. Jiang, Sens. Actuators, B 2020, 321, 128439.
- 96B. Yang, X. M. Cao, X. Q. Gong, P. Hu, Phys. Chem. Chem. Phys. 2012, 14, 3741.
- 97K. Sun, M. Kohyama, S. Tanaka, S. Takeda, J. Phys. Chem. C 2014, 118, 1611.
- 98Z. J. Zhao, Z. Li, Y. Cui, H. Zhu, W. F. Schneider, W. N. Delgass, F. Ribeiro, J. Greeley, J. Catal. 2017, 345, 157.
- 99P. Janthon, S. Luo, S. M. Kozlov, F. Viñes, J. Limtrakul, D. G. Truhlar, F. Illas, J. Chem. Theory Comput. 2014, 10, 3832.
- 100Bader Charge Analysis, http://theory.cm.utexas.edu/henkelman/code/bader/, (accessed: April 2021).