Tuning Electronic Structure and Composition of FeNi Nanoalloys for Enhanced Oxygen Evolution Electrocatalysis via a General Synthesis Strategy
Corresponding Author
Yong Wang
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
E-mail: [email protected], [email protected], [email protected], [email protected]
Search for more papers by this authorWei Nong
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorNa Gong
Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore, 138634 Singapore
Search for more papers by this authorTeddy Salim
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorMingchuan Luo
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333 CC The Netherlands
Search for more papers by this authorTeck Leong Tan
Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632 Singapore
Search for more papers by this authorCorresponding Author
Kedar Hippalgaonkar
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore, 138634 Singapore
E-mail: [email protected], [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Zheng Liu
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
School of Electrical and Electronic Engineering and The Photonics Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
E-mail: [email protected], [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Yizhong Huang
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
E-mail: [email protected], [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Yong Wang
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
E-mail: [email protected], [email protected], [email protected], [email protected]
Search for more papers by this authorWei Nong
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorNa Gong
Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore, 138634 Singapore
Search for more papers by this authorTeddy Salim
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Search for more papers by this authorMingchuan Luo
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333 CC The Netherlands
Search for more papers by this authorTeck Leong Tan
Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632 Singapore
Search for more papers by this authorCorresponding Author
Kedar Hippalgaonkar
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore, 138634 Singapore
E-mail: [email protected], [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Zheng Liu
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
School of Electrical and Electronic Engineering and The Photonics Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
E-mail: [email protected], [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Yizhong Huang
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
E-mail: [email protected], [email protected], [email protected], [email protected]
Search for more papers by this authorAbstract
Developing low-cost and efficient oxygen evolution electrocatalysts is key to decarbonization. A facile, surfactant-free, and gram-level biomass-assisted fast heating and cooling synthesis method is reported for synthesizing a series of carbon-encapsulated dense and uniform FeNi nanoalloys with a single-phase face-centered-cubic solid-solution crystalline structure and an average particle size of sub-5 nm. This method also enables precise control of both size and composition. Electrochemical measurements show that among FexNi(1−x) nanoalloys, Fe0.5Ni0.5 has the best performance. Density functional theory calculations support the experimental findings and reveal that the optimally positioned d-band center of O-covered Fe0.5Ni0.5 renders a half-filled antibonding state, resulting in moderate binding energies of key reaction intermediates. By increasing the total metal content from 25 to 60 wt%, the 60% Fe0.5Ni0.5/40% C shows an extraordinarily low overpotential of 219 mV at 10 mA cm−2 with a small Tafel slope of 23.2 mV dec−1 for the oxygen evolution reaction, which are much lower than most other FeNi-based electrocatalysts and even the state-of-the-art RuO2. It also shows robust durability in an alkaline environment for at least 50 h. The gram-level fast heating and cooling synthesis method is extendable to a wide range of binary, ternary, quaternary nanoalloys, as well as quinary and denary high-entropy-alloy nanoparticles.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202203340-sup-0001-SuppMat.pdf5.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Yao, S. Hu, W. Chen, Z.-Q. Huang, W. Wei, T. Yao, R. Liu, K. Zang, X. Wang, G. Wu, W. Yuan, T. Yuan, B. Zhu, W. Liu, Z. Li, D. He, Z. Xue, Y. Wang, X. Zheng, J. Dong, C.-R. Chang, Y. Chen, X. Hong, J. Luo, S. Wei, W.-X. Li, P. Strasser, Y. Wu, Y. Li, Nat. Catal. 2019, 2, 304.
- 2Y.-R. Zheng, J. Vernieres, Z. Wang, K. Zhang, D. Hochfilzer, K. Krempl, T.-W. Liao, F. Presel, T. Altantzis, J. Fatermans, S. B. Scott, N. M. Secher, C. Moon, P. Liu, S. Bals, S. Van Aert, A. Cao, M. Anand, J. K. Nørskov, J. Kibsgaard, I. Chorkendorff, Nat. Energy 2021, 7, 55.
- 3T. Wu, S. Sun, J. Song, S. Xi, Y. Du, B. Chen, W. A. Sasangka, H. Liao, C. L. Gan, G. G. Scherer, L. Zeng, H. Wang, H. Li, A. Grimaud, Z. J. Xu, Nat. Catal. 2019, 2, 763.
- 4J. T. Mefford, A. R. Akbashev, M. Kang, C. L. Bentley, W. E. Gent, H. D. Deng, D. H. Alsem, Y. S. Yu, N. J. Salmon, D. A. Shapiro, P. R. Unwin, W. C. Chueh, Nature 2021, 593, 67.
- 5Q. Wang, L. Shang, R. Shi, X. Zhang, G. I. N. Waterhouse, L.-Z. Wu, C.-H. Tung, T. Zhang, Nano Energy 2017, 40, 382.
- 6R. Frydendal, E. A. Paoli, B. P. Knudsen, B. Wickman, P. Malacrida, I. E. Stephens, I. Chorkendorff, ChemElectroChem 2014, 1, 2075.
- 7Y. Lee, J. Suntivich, K. J. May, E. E. Perry, Y. Shao-Horn, J. Phys. Chem. Lett. 2012, 3, 399.
- 8E. Antolini, ACS Catal. 2014, 4, 1426.
- 9R. Kötz, H. Lewerenz, S. Stucki, J. Electrochem. Soc. 1983, 130, 825.
- 10R. Kötz, H. Neff, S. Stucki, J. Electrochem. Soc. 1984, 131, 72.
- 11A. Li, S. Kong, C. Guo, H. Ooka, K. Adachi, D. Hashizume, Q. Jiang, H. Han, J. Xiao, R. Nakamura, Nat. Catal. 2022, 5, 109.
- 12X. X. Wang, M. T. Swihart, G. Wu, Nat. Catal. 2019, 2, 578.
- 13R. Reske, H. Mistry, F. Behafarid, B. Roldan Cuenya, P. Strasser, J. Am. Chem. Soc. 2014, 136, 6978.
- 14H. Mistry, R. Reske, Z. Zeng, Z.-J. Zhao, J. Greeley, P. Strasser, B. R. Cuenya, J. Am. Chem. Soc. 2014, 136, 16473.
- 15M. Luo, Z. Zhao, Y. Zhang, Y. Sun, Y. Xing, F. Lv, Y. Yang, X. Zhang, S. Hwang, Y. Qin, J. Y. Ma, F. Lin, D. Su, G. Lu, S. Guo, Nature 2019, 574, 81.
- 16P. Sabatier, Ber. Dtsch. Chem. Ges. 1911, 44, 1984.
- 17B. Hammer, J. K. Norskov, Nature 1995, 376, 238.
- 18C. Wei, Y. Sun, G. G. Scherer, A. C. Fisher, M. Sherburne, J. W. Ager, Z. J. Xu, J. Am. Chem. Soc. 2020, 142, 7765.
- 19M. Luo, S. Guo, Nat. Rev. Mater. 2017, 2, 17059.
- 20Y. Wu, X. Liu, D. Han, X. Song, L. Shi, Y. Song, S. Niu, Y. Xie, J. Cai, S. Wu, J. Kang, J. Zhou, Z. Chen, X. Zheng, X. Xiao, G. Wang, Nat. Commun. 2018, 9, 1425.
- 21C.-Z. Yuan, Z.-T. Sun, Y.-F. Jiang, Z.-K. Yang, N. Jiang, Z.-W. Zhao, U. Y. Qazi, W.-H. Zhang, A.-W. Xu, Small 2017, 13, 1604161.
- 22Z. Wang, Z. Lin, J. Deng, S. Shen, F. Meng, J. Zhang, Q. Zhang, W. Zhong, L. Gu, Adv. Energy Mater. 2021, 11, 2003023.
- 23Y. Pan, K. Sun, Y. Lin, X. Cao, Y. Cheng, S. Liu, L. Zeng, W.-C. Cheong, D. Zhao, K. Wu, Z. Liu, Y. Liu, D. Wang, Q. Peng, C. Chen, Y. Li, Nano Energy 2019, 56, 411.
- 24S. Sun, X. Zhou, B. Cong, W. Hong, G. Chen, ACS Catal. 2020, 10, 9086.
- 25Y. Hu, D. Huang, J. Zhang, Y. Huang, M.-S. J. T. Balogun, Y. Tong, ChemCatChem 2019, 11, 6051.
- 26Z. Chen, Y. Song, J. Cai, X. Zheng, D. Han, Y. Wu, Y. Zang, S. Niu, Y. Liu, J. Zhu, X. Liu, G. Wang, Angew. Chem., Int. Ed. Engl. 2018, 57, 5076.
- 27U. Y. Qazi, C. Z. Yuan, N. Ullah, Y. F. Jiang, M. Imran, A. Zeb, S. J. Zhao, R. Javaid, A. W. Xu, ACS Appl. Mater. Interfaces 2017, 9, 28627.
- 28M. Wu, B. Guo, A. Nie, R. Liu, J. Colloid Interface Sci. 2020, 561, 585.
- 29W. Cai, R. Chen, H. Yang, H. B. Tao, H. Y. Wang, J. Gao, W. Liu, S. Liu, S. F. Hung, B. Liu, Nano Lett. 2020, 20, 4278.
- 30Z. Wang, J. Ang, J. Liu, X. Y. D. Ma, J. Kong, Y. Zhang, T. Yan, X. Lu, Appl. Catal., B 2020, 263, 118344.
- 31D. Lim, E. Oh, C. Lim, S. E. Shim, S.-H. Baeck, Catal. Today 2020, 352, 27.
- 32C. Wang, H. Yang, Y. Zhang, Q. Wang, Angew. Chem., Int. Ed. Engl. 2019, 58, 6099.
- 33Y. Yao, Z. Huang, L. A. Hughes, J. Gao, T. Li, D. Morris, S. E. Zeltmann, B. H. Savitzky, C. Ophus, Y. Z. Finfrock, Q. Dong, M. Jiao, Y. Mao, M. Chi, P. Zhang, J. Li, A. M. Minor, R. Shahbazian-Yassar, L. Hu, Matter 2021, 4, 2340.
- 34R. Ding, Q. Chen, Q. Luo, L. Zhou, Y. Wang, Y. Zhang, G. Fan, Green Chem. 2020, 22, 835.
- 35Y. Su, Y. Zhu, H. Jiang, J. Shen, X. Yang, W. Zou, J. Chen, C. Li, Nanoscale 2014, 6, 15080.
- 36Q. Li, Y. Li, X. Zhang, S. B. Chikkannanavar, Y. Zhao, A. M. Dangelewicz, L. Zheng, S. K. Doorn, Q. Jia, D. E. Peterson, Adv. Mater. 2007, 19, 3358.
- 37L. Ye, Y. Ying, D. Sun, Z. Zhang, L. Fei, Z. Wen, J. Qiao, H. Huang, Angew. Chem., Int. Ed. 2020, 59, 3244.
- 38T. Huang, Y. Chen, J. M. Lee, Small 2017, 13, 1702753.
- 39W. Yaseen, N. Ullah, M. Xie, W. Wei, Y. Xu, M. Zahid, C. J. Oluigbo, B. A. Yusuf, J. Xie, Int. J. Hydrogen Energy 2021, 46, 5234.
- 40A. Herrera-Gomez, O. Cortazar-Martínez, J. F. Fabian-Jocobi, A. Carmona-Carmona, J. G. Raboño-Borbolla, M. Bravo-Sanchez, J. A. Huerta-Ruelas, Surf. Interface Anal. 2020, 52, 591.
- 41A. P. Grosvenor, M. C. Biesinger, R. S. C. Smart, N. S. McIntyre, Surf. Sci. 2006, 600, 1771.
- 42J. Jiang, Y.-J. Zhang, X.-J. Zhu, S. Lu, L.-L. Long, J.-J. Chen, Nano Energy 2021, 81, 105619.
- 43A. Zunger, S. H. Wei, L. G. Ferreira, J. E. Bernard, Phys. Rev. Lett. 1990, 65, 353.
- 44B. Hammer, J. K. Nørskov, Surf. Sci. 1995, 343, 211.
- 45K. Juodkazis, J. Juodkazytė, R. Vilkauskaitė, V. Jasulaitienė, J. Solid State Electrochem. 2008, 12, 1469.
- 46G. C. Allen, P. M. Tucker, R. K. Wild, Oxid. Met. 1979, 13, 223.
- 47G. T. Burstein, D. H. Davies, J. Electrochem. Soc. 1981, 128, 33.
- 48S. Haupt, H. H. Strehblow, Langmuir 1987, 3, 873.
- 49J. Rossmeisl, Z. W. Qu, H. Zhu, G. J. Kroes, J. K. Nørskov, J. Electroanal. Chem. 2007, 607, 83.
- 50A. R. Kortan, R. L. Park, Phys. Rev. B 1981, 23, 6340.
- 51J. Weissenrieder, M. Göthelid, M. Månsson, H. von Schenck, O. Tjernberg, U. O. Karlsson, Surf. Sci. 2003, 527, 163.
- 52J. Rossmeisl, A. Logadottir, J. K. Nørskov, Chem. Phys. 2005, 319, 178.
- 53J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jónsson, J. Phys. Chem. B 2004, 108, 17886.
- 54B. Hammer, J. K. Nørskov, Adv. Catal. 2000, 45, 71.
- 55R. Dronskowski, P. E. Bloechl, J. Phys. Chem. 1993, 97, 8617.
- 56C.-L. Huang, K. Sasaki, D. Senthil Raja, C.-T. Hsieh, Y.-J. Wu, J.-T. Su, C.-C. Cheng, P.-Y. Cheng, S.-H. Lin, Y. Choi, S.-Y. Lu, Adv. Energy Mater. 2021, 11, 2101827.
- 57S. Zhao, M. Li, M. Han, D. Xu, J. Yang, Y. Lin, N.-E. Shi, Y. Lu, R. Yang, B. Liu, Z. Dai, J. Bao, Adv. Funct. Mater. 2018, 28, 1706018.
- 58Y. Yao, Z. Huang, P. Xie, S. D. Lacey, R. J. Jacob, H. Xie, F. Chen, A. Nie, T. Pu, M. Rehwoldt, Science 2018, 359, 1489.
- 59Y. Yao, Q. Dong, A. Brozena, J. Luo, J. Miao, M. Chi, C. Wang, I. G. Kevrekidis, Z. J. Ren, J. Greeley, G. Wang, A. Anapolsky, L. Hu, Science 2022, 376, eabn3103.
- 60S. Shit, S. Chhetri, W. Jang, N. C. Murmu, H. Koo, P. Samanta, T. Kuila, ACS Appl. Mater. Interfaces 2018, 10, 27712.
- 61U. De Silva, J. Masud, N. Zhang, Y. Hong, W. P. Liyanage, M. A. Zaeem, M. Nath, J. Mater. Chem. A 2018, 6, 7608.
- 62G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
- 63G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
- 64J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 65S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.