Regulating Polysulfide Conversion Kinetics Using Tungsten Diboride as Additive For High-Performance Li–S Battery
Tuhin Subhra Sahu
Electrochemical Energy Laboratory, Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai, 400076 India
Search for more papers by this authorAbhijitha V G
Condensed Matter Theory and Computational Lab, Department of Physics, IIT Madras, Chennai, 600036 India
Search for more papers by this authorIpsita Pal
Electrochemical Energy Laboratory, Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai, 400076 India
Search for more papers by this authorSupriya Sau
Electrochemical Energy Laboratory, Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai, 400076 India
Search for more papers by this authorManoj Gautam
Electrochemical Energy Laboratory, Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai, 400076 India
Search for more papers by this authorBirabar R. K. Nanda
Condensed Matter Theory and Computational Lab, Department of Physics, IIT Madras, Chennai, 600036 India
Centre for Atomistic Modelling and Materials Design, IIT Madras, Chennai, 600036 India
Search for more papers by this authorCorresponding Author
Sagar Mitra
Electrochemical Energy Laboratory, Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai, 400076 India
E-mail: [email protected]
Search for more papers by this authorTuhin Subhra Sahu
Electrochemical Energy Laboratory, Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai, 400076 India
Search for more papers by this authorAbhijitha V G
Condensed Matter Theory and Computational Lab, Department of Physics, IIT Madras, Chennai, 600036 India
Search for more papers by this authorIpsita Pal
Electrochemical Energy Laboratory, Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai, 400076 India
Search for more papers by this authorSupriya Sau
Electrochemical Energy Laboratory, Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai, 400076 India
Search for more papers by this authorManoj Gautam
Electrochemical Energy Laboratory, Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai, 400076 India
Search for more papers by this authorBirabar R. K. Nanda
Condensed Matter Theory and Computational Lab, Department of Physics, IIT Madras, Chennai, 600036 India
Centre for Atomistic Modelling and Materials Design, IIT Madras, Chennai, 600036 India
Search for more papers by this authorCorresponding Author
Sagar Mitra
Electrochemical Energy Laboratory, Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai, 400076 India
E-mail: [email protected]
Search for more papers by this authorAbstract
The practical application of Li–S batteries is severely limited due to low sulfur utilization, sluggish sulfur redox kinetics, intermediate polysulfide dissolution/shuttling, and subsequent anode degradation. A smart cathode with efficient electrocatalyst and a protected anode is necessary. Herein, hollow carbon (HC) spheres are used as a sulfur host to improve the electrical conductivity and buffer the volume expansion of active materials. Considering the weak interaction between carbon and lithium polysulfides (LiPS), tungsten diboride (WB2) nanoparticles are used as a conductive additive. Both experimental and density functional theory (DFT) comprehensively exhibit that metallic WB2 nanoparticles can firmly anchor the LiPS through B–S bond formation, accelerate their electrocatalytic conversion, and immobilize them. DFT also reveals that boron interacts with LiPS either through molecular or dissociative adsorption depending on its boron layer arrangement in WB2. Further, a freestanding lithiated-poly(4-styrene sulfonate) membrane constructed on lithium, offers a homogeneous Li-ion flux, stable interface, and protection from LiPS. Finally, cells with the HC-S+WB2 cathode and protected anode exhibit improved active material utilization, superior rate performance, and impressive cycling stability, even at high sulfur loading and less quantity of the electrolyte. Further, the pouch cells demonstrate high reversible capacity and an excellent capacity retention.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202203222-sup-0001-SuppMat.pdf3.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1B. Dunn, H. Kamath, J.-M. Tarascon, Science 2011, 334, 928.
- 2J. B. Goodenough, K.-S. Park, J. Am. Chem. Soc. 2013, 135, 1167.
- 3V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy Environ. Sci. 2011, 4, 3243.
- 4P. G. Bruce, S. A. Freunberger, L. J. Hardwick, J.-M. Tarascon, Nat. Mater. 2012, 11, 19.
- 5A. Manthiram, Y. Fu, S.-H. Chung, C. Zu, Y.-S. Su, Chem. Rev. 2014, 114, 11751.
- 6G. Li, S. Wang, Y. Zhang, M. Li, Z. Chen, J. Lu, Adv. Mater. 2018, 30, 1705590.
- 7S.-H. Chung, A. Manthiram, Adv. Mater. 2019, 31, 1901125.
- 8J. Lei, T. Liu, J. Chen, M. Zheng, Q. Zhang, B. Mao, Q. Dong, Chem 2020, 6, 2533.
- 9Y. v Mikhaylik, J. R. Akridge, J. Electrochem. Soc. 2004, 151, A1969.
- 10M. Balaish, E. Peled, D. Golodnitsky, Y. Ein-Eli, Angew. Chem., Int. Ed. 2015, 54, 436.
- 11X.-B. Cheng, R. Zhang, C.-Z. Zhao, Q. Zhang, Chem. Rev. 2017, 117, 10403.
- 12H. Liu, X.-B. Cheng, R. Xu, X.-Q. Zhang, C. Yan, J.-Q. Huang, Q. Zhang, Adv. Energy Mater. 2019, 9, 1902254.
- 13X. Ji, K. T. Lee, L. F. Nazar, Nat. Mater. 2009, 8, 500.
- 14P. Han, S.-H. Chung, A. Manthiram, Small 2019, 15, 1900690.
- 15D. Gueon, M.-Y. Ju, J. H. Moon, Proc. Natl. Acad. Sci. USA 2020, 117, 12686.
- 16Z. Wang, Y. Dong, H. Li, Z. Zhao, H. bin Wu, C. Hao, S. Liu, J. Qiu, X. W. (David) Lou, Nat. Commun. 2014, 5, 5002.
- 17H. Li, Y. Tao, C. Zhang, D. Liu, J. Luo, W. Fan, Y. Xu, Y. Li, C. You, Z.-Z. Pan, M. Ye, Z. Chen, Z. Dong, D.-W. Wang, F. Kang, J. Lu, Q.-H. Yang, Adv. Energy Mater. 2018, 8, 1703438.
- 18K. Shen, H. Mei, B. Li, J. Ding, S. Yang, Adv. Energy Mater. 2018, 8, 1701527.
- 19D. Su, M. Cortie, G. Wang, Adv. Energy Mater. 2017, 7, 1602014.
- 20Z. Cao, C. Wang, J. Chen, Mater. Lett. 2018, 225, 157.
- 21C. Jin, W. Zhang, Z. Zhuang, J. Wang, H. Huang, Y. Gan, Y. Xia, C. Liang, J. Zhang, X. Tao, J. Mater. Chem. A 2017, 5, 632.
- 22F. Wu, S. Zhao, L. Chen, Y. Lu, Y. Su, Y. Jia, L. Bao, J. Wang, S. Chen, R. Chen, Energy Storage Mater. 2018, 14, 383.
- 23S. Chen, J. Zhang, Z. Wang, L. Nie, X. Hu, Y. Yu, W. Liu, Nano Lett. 2021, 21, 5285.
- 24G. D. Park, J. Lee, Y. Piao, Y. C. Kang, Chem. Eng. J. 2018, 335, 600.
- 25H. M. Kim, J.-Y. Hwang, S. Bang, H. Kim, M. H. Alfaruqi, J. Kim, C. S. Yoon, Y.-K. Sun, ACS Energy Lett. 2020, 5, 3168.
- 26J. Cho, S. Ryu, Y. J. Gong, S. Pyo, H. Yun, H. Kim, J. Lee, J. Yoo, Y. S. Kim, Chem. Eng. J. 2022, 439, 135568.
- 27J. He, A. Bhargav, H. Yaghoobnejad Asl, Y. Chen, A. Manthiram, Adv. Energy Mater. 2020, 10, 2001017.
- 28B. Zhang, C. Luo, Y. Deng, Z. Huang, G. Zhou, W. Lv, Y.-B. He, Y. Wan, F. Kang, Q.-H. Yang, Adv. Energy Mater. 2020, 10, 2000091.
- 29H. Zhang, L. K. Ono, G. Tong, Y. Liu, Y. Qi, Nat. Commun. 2021, 12, 4738.
- 30C. Zhang, B. Fei, D. Yang, H. Zhan, J. Wang, J. Diao, J. Li, G. Henkelman, D. Cai, J. J. Biendicho, J. R. Morante, A. Cabot, Adv. Funct. Mater. 2022, 32, 2201322.
- 31C. Li, W. Ge, S. Qi, L. Zhu, R. Huang, M. Zhao, Y. Qian, L. Xu, Adv. Energy Mater. 2022, 12, 2103915.
- 32Q. Pang, C. Y. Kwok, D. Kundu, X. Liang, L. F. Nazar, Joule 2019, 3, 136.
- 33R. Wu, H. Xu, Y. Zhao, C. Zha, J. Deng, C. Zhang, G. Lu, T. Qin, W. Wang, Y. Yin, C. Zhu, L. Wang, G. Ouyang, W. Huang, Energy Storage Mater. 2020, 32, 216.
- 34B. Wang, L. Wang, B. Zhang, S. Zeng, F. Tian, J. Dou, Y. Qian, L. Xu, ACS Nano 2022, 16, 4947.
- 35J. Wu, Z. Rao, X. Liu, Y. Shen, C. Fang, L. Yuan, Z. Li, W. Zhang, X. Xie, Y. Huang, Adv. Mater. 2021, 33, 2007428.
- 36D. Wang, H. Liu, F. Liu, G. Ma, J. Yang, X. Gu, M. Zhou, Z. Chen, Nano Lett. 2021, 21, 4757.
- 37S. Gao, A. Cannon, F. Sun, Y. Pan, D. Yang, S. Ge, N. Liu, A. P. Sokolov, E. Ryan, H. Yang, P.-F. Cao, Cell Rep. Phys. Sci. 2021, 2, 100534.
- 38M. Zhao, B.-Q. Li, X.-Q. Zhang, J.-Q. Huang, Q. Zhang, ACS Cent. Sci. 2020, 6, 1095.
- 39C. Wang, Q. Tao, S. Ma, T. Cui, X. Wang, S. Dong, P. Zhu, Phys. Chem. Chem. Phys. 2017, 19, 8919.
- 40N. Shubha, H. Zhu, M. Forsyth, M. Srinivasan, Polymer 2016, 99, 748.
- 41Z. Li, F. Liu, S. Chen, F. Zhai, Y. Li, Y. Feng, W. Feng, Nano Energy 2021, 82, 106062.
- 42D. Gonbeau, H. Bouih, G. Pfister-Guillouzo, M. Menetrier, A. Levasseur, J. Chem. Soc., Faraday Trans. 1995, 91, 93.
- 43F. Y. Fan, W. C. Carter, Y. M. Chiang, Adv. Mater. 2015, 27, 5203.
- 44G. Zhou, H. Tian, Y. Jin, X. Tao, B. Liu, R. Zhang, Z. W. Seh, D. Zhuo, Y. Liu, J. Sun, J. Zhao, C. Zu, D. S. Wu, Q. Zhang, Y. Cui, Proc. Natl. Acad. Sci. USA 2017, 114, 840.
- 45C. Zhang, R. Du, J. J. Biendicho, M. Yi, K. Xiao, D. Yang, T. Zhang, X. Wang, J. Arbiol, J. Llorca, Y. Zhou, J. R. Morante, A. Cabot, Adv. Energy Mater. 2021, 11, 2100432.
- 46Y. Qi, Q. J. Li, Y. Wu, S. juan Bao, C. Li, Y. Chen, G. Wang, M. Xu, Nat. Commun. 2021, 12, 6347.
- 47S.-H. Chung, P. Han, R. Singhal, V. Kalra, A. Manthiram, Adv. Energy Mater. 2015, 5, 1500738.
- 48S.-H. Chung, C.-H. Chang, A. Manthiram, Energy Environ. Sci. 2016, 9, 3188.
- 49Z. Wang, J. Shen, J. Liu, X. Xu, Z. Liu, R. Hu, L. Yang, Y. Feng, J. Liu, Z. Shi, L. Ouyang, Y. Yu, M. Zhu, Adv. Mater. 2019, 31, 1902228.
- 50S. Zheng, F. Yi, Z. Li, Y. Zhu, Y. Xu, C. Luo, J. Yang, C. Wang, Adv. Funct. Mater. 2014, 24, 4156.