Ultra-Broadband Random Laser and White-Light Emissive Carbon Dots/Crystal In-Situ Hybrids
Jingjing Wang
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083 P. R. China
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorShaofeng Zhang
Shenzhen Key Laboratory of Laser Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorYunfei Li
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorCuiyu Wu
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorCorresponding Author
Wenfei Zhang
Shenzhen Key Laboratory of Laser Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
E-mail:[email protected][email protected][email protected]
Search for more papers by this authorCorresponding Author
Hailong Zhang
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083 P. R. China
E-mail:[email protected][email protected][email protected]
Search for more papers by this authorCorresponding Author
Zheng Xie
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
E-mail:[email protected][email protected][email protected]
Search for more papers by this authorShuyun Zhou
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorJingjing Wang
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083 P. R. China
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorShaofeng Zhang
Shenzhen Key Laboratory of Laser Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorYunfei Li
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorCuiyu Wu
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorCorresponding Author
Wenfei Zhang
Shenzhen Key Laboratory of Laser Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
E-mail:[email protected][email protected][email protected]
Search for more papers by this authorCorresponding Author
Hailong Zhang
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083 P. R. China
E-mail:[email protected][email protected][email protected]
Search for more papers by this authorCorresponding Author
Zheng Xie
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
E-mail:[email protected][email protected][email protected]
Search for more papers by this authorShuyun Zhou
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
Search for more papers by this authorAbstract
The continuous white-light emission of carbon dots (CDs) can be applied to producing multicolor laser emissions by one single medium. Meanwhile, the solid-state emission greatly contributes to its practical application. In this work, a strategy to realize the in-situ hybridization of silane-functionalized CDs (SiCDs) and 1,3,5-benzenetricarboxylic acid trimethyl ester (Et3BTC) by a one-pot solvothermal method is reported. Significantly, the SiCDs/Et3BTC hybrid crystals exhibit ultra-broadband random laser emission over the near ultraviolet-visible region under 265 nm nanosecond pulsed laser excitation. The wavelength region of laser emission is achieved from 315 to 600 nm within an emission band of CDs-based materials. It is worth noting that the wavelength range of the laser is wider than the previously reported works. It is proposed that the continuous white-light emission of SiCDs caused by multiple fluorescence centers mainly gives rise to the broadband random laser emission. Moreover, the crystals are conducive to forming resonance and realizing solid-state laser emission. This in-situ method is expected to enable a more convenient, cheaper, and greener approach to prepare luminescent hybrids for application in multicolor laser displays, multi-level laser anti-counterfeiting, supercontinuum light sources, and so on.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smll202203152-sup-0001-SuppMat.pdf1.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. D. Ellis, M. E. McCarthy, M. A. Z. Al Khateeb, M. Sorokina, N. J. Doran, Adv. Opt. Photonics 2017, 9, 429.
- 2M. Ross, P. Freedman, J. Abernathy, G. Matassov, J. Wolf, J. D. Barry, Proc. IEEE 1978, 66, 319.
- 3J. Zhang, P. Byers, A. Erben, C. Frank, L. Schulte-Spechtel, M. Heymann, D. Docheva, H. P. Huber, S. Sudhop, H. Clausen-Schaumann, Adv. Funct. Mater. 2021, 31, 2100066.
- 4Y. Oh, S.-H. Lee, J. M. Lim, K. Y. Chung, M. R. Roh, J. Am. Acad. Dermatol. 2019, 80, 523.
- 5X.-Q. Liu, Q.-D. Chen, K.-M. Guan, Z.-C. Ma, Y.-H. Yu, Q.-K. Li, Z.-N. Tian, H.-B. Sun, Laser Photonics Rev. 2017, 11, 1600115.
- 6S. Qu, J. Ding, J. Fu, M. Fu, B. Zhang, X. Song, Addit. Manuf. 2021, 48, 102417.
- 7M. A. Steindorfer, G. Kirchner, F. Koidl, P. Wang, B. Jilete, T. Flohrer, Nat. Commun. 2020, 11, 3735.
- 8E. W. Mitchell, M. S. Hoehler, F. R. Giorgetta, T. Hayden, G. B. Rieker, N. R. Newbury, E. Baumann, Optica 2018, 5, 988.
- 9T. H. Maiman, Nature 1960, 187, 493.
- 10J. Xia, K. Xie, J. Ma, X. Chen, Y. Li, J. Wen, J. Chen, J. Zhang, S. Wu, X. Cheng, Z. Hu, Nanophotonics 2018, 7, 1341.
- 11L. Sznitko, K. Kaliciak, A. Adamow, J. Mysliwiec, Opt. Mater. 2016, 56, 121.
- 12E. H. Penilla, L. F. Devia-Cruz, M. A. Duarte, C. L. Hardin, Y. Kodera, J. E. Garay, Light: Sci. Appl. 2018, 7, 33.
- 13A. R. Hlil, B. C. Lima, J. Thomas, J. S. Boisvert, H. Iden, Y. Garcia-Puente, L. J. Q. Maia, Y. Ledemi, Y. Messaddeq, A. S. L. Gomes, R. Kashyap, Opt. Mater. 2019, 97, 109387.
- 14Q. Zhang, R. Su, W. Du, X. Liu, L. Zhao, S. T. Ha, Q. Xiong, Small Methods 2017, 1, 1700163.
- 15Y. Mi, Y. Zhong, Q. Zhang, X. Liu, Adv. Opt. Mater. 2019, 7, 1900544.
- 16C. Zhou, J. M. Pina, T. Zhu, D. H. Parmar, H. Chang, J. Yu, F. Yuan, G. Bappi, Y. Hou, X. Zheng, J. Abed, H. Chen, J. Zhang, Y. Gao, B. Chen, Y.-K. Wang, H. Chen, T. Zhang, S. Hoogland, M. I. Saidaminov, L. Sun, O. M. Bakr, H. Dong, L. Zhang, E. H. Sargent, Adv. Sci. 2021, 8, 2101125.
- 17J. M. Winkler, M. J. Ruckriegel, H. Rojo, R. C. Keitel, E. De Leo, F. T. Rabouw, D. J. Norris, ACS Nano 2020, 14, 5223.
- 18B. Yuan, S. Guan, X. Sun, X. Li, H. Zeng, Z. Xie, P. Chen, S. Zhou, ACS Appl. Mater. Interfaces 2018, 10, 16005.
- 19H. Jia, Z. Wang, T. Yuan, F. Yuan, X. Li, Y. Li, Z. a. Tan, L. Fan, S. Yang, Adv. Sci. 2019, 6, 1900397.
- 20F. Yuan, T. Yuan, L. Sui, Z. Wang, Z. Xi, Y. Li, X. Li, L. Fan, Z. a. Tan, A. Chen, M. Jin, S. Yang, Nat. Commun. 2018, 9, 2249.
- 21M. Cui, S. Ren, Q. Xue, H. Zhao, L. Wang, J. Alloys Compd. 2017, 726, 680.
- 22J. T. Margraf, F. Lodermeyer, V. Strauss, P. Haines, J. Walter, W. Peukert, R. D. Costa, T. Clark, D. M. Guldi, Nanoscale Horiz. 2016, 1, 220.
- 23K. K. R. Datta, G. Qi, R. Zboril, E. P. Giannelis, J. Mater. Chem. C 2016, 4, 9798.
- 24W. F. Zhang, H. Zhu, S. F. Yu, H. Y. Yang, Adv. Mater. 2012, 24, 2263.
- 25Z. Han, Y. Ni, J. Ren, W. Zhang, Y. Wang, Z. Xie, S. Zhou, S. F. Yu, Nanoscale 2019, 11, 11577.
- 26H. Liu, F. Wang, Y. Wang, J. Mei, D. Zhao, ACS Appl. Mater. Interfaces 2017, 9, 18248.
- 27W. F. Zhang, L. M. Jin, S. F. Yu, H. Zhu, S. S. Pan, Y. H. Zhao, H. Y. Yang, J. Mater. Chem. C 2014, 2, 1525.
- 28F. Yuan, Z. Xi, X. Shi, Y. Li, X. Li, Z. Wang, L. Fan, S. Yang, Adv. Opt. Mater. 2019, 7, 1801202.
- 29T. Meng, T. Yuan, X. Li, Y. Li, L. Fan, S. Yang, Chem. Commun. 2019, 55, 6531.
- 30Y. Wu, H. Zhang, A. Pan, Q. Wang, Y. Zhang, G. Zhou, L. He, Adv. Sci. 2019, 6, 1801432.
10.1002/advs.201801432 Google Scholar
- 31F. Arcudi, L. Đorđević, M. Prato, Angew. Chem., Int. Ed. 2017, 56, 4170.
- 32T. Yuan, F. Yuan, X. Li, Y. Li, L. Fan, S. Yang, Chem. Sci. 2019, 10, 9801.
- 33L.-H. Mao, W.-Q. Tang, Z.-Y. Deng, S.-S. Liu, C.-F. Wang, S. Chen, Ind. Eng. Chem. Res. 2014, 53, 6417.
- 34A. Panniello, A. E. Di Mauro, E. Fanizza, N. Depalo, A. Agostiano, M. L. Curri, M. Striccoli, J. Phys. Chem. C 2018, 122, 839.
- 35W. Liu, D. Banerjee, F. Lin, J. Li, J. Mater. Chem. C 2019, 7, 1484.
- 36T. Zhang, F. Zhao, L. Li, B. Qi, D. Zhu, J. Lü, C. Lü, ACS Appl. Mater. Interfaces 2018, 10, 19796.
- 37J. Joseph, A. A. Anappara, ChemPhysChem 2017, 18, 292.
- 38H. J. Yoo, B. E. Kwak, D. H. Kim, J. Phys. Chem. C 2019, 123, 27124.
- 39S. Shishodia, V. Rimal, P. K. Srivastava, Appl. Nanosci. 2021, 11, 1691.
- 40Y. Chen, J. He, C. Hu, H. Zhang, B. Lei, Y. Liu, J. Mater. Chem. C 2017, 5, 6243.
- 41Z. Xie, F. Wang, C.-y. Liu, Adv. Mater. 2012, 24, 1716.
- 42X. Dong, Y. Wang, R. Guan, J. Ren, Z. Xie, Small 2021, 17, 2105273.
- 43M. Adam, N. Gaponik, A. Eychmüller, T. Erdem, Z. Soran-Erdem, H. V. Demir, J. Phys. Chem. Lett. 2016, 7, 4117.
- 44S. Prakash, S. Sahu, S. Bhattacharya, P. B. Bisht, A. K. Mishra, Chem. - Asian J. 2021, 16, 783.
- 45H. Zhu, W. Zhang, S. F. Yu, Nanoscale 2013, 5, 1797.
- 46A. Sciortino, N. Mauro, G. Buscarino, L. Sciortino, R. Popescu, R. Schneider, G. Giammona, D. Gerthsen, M. Cannas, F. Messina, Chem. Mater. 2018, 30, 1695.
- 47S. Qu, X. Liu, X. Guo, M. Chu, L. Zhang, D. Shen, Adv. Funct. Mater. 2014, 24, 2689.
- 48Y. Ni, X. Li, W. Liang, S. Zhang, X. Xu, Z. Li, L. Li, Y. Shao, S. Ruan, W. Zhang, Nanoscale 2021, 13, 7566.
- 49Y. Ni, H. Wan, W. Liang, S. Zhang, X. Xu, L. Li, Y. Shao, S. Ruan, W. Zhang, Nanoscale 2021, 13, 16872.
- 50Y. Ni, Z. Han, J. Ren, Z. Wang, W. Zhang, Z. Xie, Y. Shao, S. Zhou, Nanomaterials 2021, 11, 1762.
- 51Y. Zhang, H. Song, L. Wang, J. Yu, B. Wang, Y. Hu, S.-Q. Zang, B. Yang, S. Lu, Angew. Chem., Int. Ed. 2021, 60, 25514.
- 52Z. Han, K. Wang, F. Du, Z. Yin, Z. Xie, S. Zhou, J. Mater. Chem. C 2018, 6, 9631.
- 53B. Yuan, Z. Xie, P. Chen, S. Zhou, J. Mater. Chem. C 2018, 6, 5957.
- 54N. Dhenadhayalan, K.-C. Lin, R. Suresh, P. Ramamurthy, J. Phys. Chem. C 2016, 120, 1252.
- 55M. Shamsipur, A. Barati, A. A. Taherpour, M. Jamshidi, J. Phys. Chem. Lett. 2018, 9, 4189.
- 56X. Xu, W. Lu, T. Wang, W. Gao, X. Yu, J. Qiu, S. F. Yu, Opt. Lett. 2020, 45, 3095.