Intaglio Contact Printing of Versatile Carbon Nanotube Composites and Its Applications for Miniaturizing High-Performance Devices
Seokwon Joo
Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826 Republic of Korea
Department of Chemical Engineering and Department of Energy Systems Research, Ajou University, Suwon, 16499 Republic of Korea
Search for more papers by this authorChae-Eun Lee
Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826 Republic of Korea
Search for more papers by this authorJeongmin Kang
Department of Chemical Engineering and Department of Energy Systems Research, Ajou University, Suwon, 16499 Republic of Korea
Search for more papers by this authorCorresponding Author
Soonmin Seo
College of BioNano Technology, Gachon University, Gyeonggi, 13120 Republic of Korea
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yoon-Kyu Song
Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826 Republic of Korea
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Ju-Hyung Kim
Department of Chemical Engineering and Department of Energy Systems Research, Ajou University, Suwon, 16499 Republic of Korea
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorSeokwon Joo
Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826 Republic of Korea
Department of Chemical Engineering and Department of Energy Systems Research, Ajou University, Suwon, 16499 Republic of Korea
Search for more papers by this authorChae-Eun Lee
Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826 Republic of Korea
Search for more papers by this authorJeongmin Kang
Department of Chemical Engineering and Department of Energy Systems Research, Ajou University, Suwon, 16499 Republic of Korea
Search for more papers by this authorCorresponding Author
Soonmin Seo
College of BioNano Technology, Gachon University, Gyeonggi, 13120 Republic of Korea
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yoon-Kyu Song
Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826 Republic of Korea
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Ju-Hyung Kim
Department of Chemical Engineering and Department of Energy Systems Research, Ajou University, Suwon, 16499 Republic of Korea
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Composites based on carbon nanotubes (CNTs) are promising patternable materials that can be engineered to incorporate the outstanding properties of CNTs into various applications via printing technologies. However, conventional printing methods for CNTs require further improvement to overcome the major drawbacks that limit the patterning resolution and target substrate. Herein, an intaglio contact printing method based on a CNT/paraffin composite is presented for realizing highly precise CNT network patterns without restrictions on the substrate. In this method, the CNT/paraffin composite can be patterned with a high resolution (<10 µm) and neatly transferred onto various substrates with a wide range of surface energies, including human skin. The patterned composite exhibits high durability against structural deformations, and structural damage caused by fatigue accumulation can be cured in a few seconds. In addition, miniaturized sensing and energy-harvesting applications are demonstrated with high performances. The present method facilitates the rapid fabrication of highly precise interdigitated electrodes via one-step printing, enabling high-performance operation and miniaturization of the devices. It is anticipated that these results will not only spur the further development of various applications of CNTs but also contribute to advances in soft lithography methods applicable to many fields of science and engineering.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smll202106174-sup-0001-SuppMat.pdf822.3 KB | Supporting Information |
smll202106174-sup-0002-MovieS1.mp419.6 MB | Supplemental Movie 1 |
smll202106174-sup-0003-MovieS2.mp419 MB | Supplemental Movie 2 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Y. Madani, A. Mandel, A. M. Seifalian, Nano Rev. 2013, 4, 21521.
10.3402/nano.v4i0.21521 Google Scholar
- 2S. Lijima, Nature 1991, 354, 56.
- 3A. A. Mamedov, N. A. Kotov, M. Prato, D. M. Guldi, J. P. Wicksted, A. Hirsch, Nat. Mater. 2002, 1, 190.
- 4A. Javey, Q. Wang, A. Ural, Y. Li, H. Dai, Nano Lett. 2002, 2, 929.
- 5B. L. Allen, P. D. Kichambare, A. Star, Adv. Mater. 2007, 19, 1439.
- 6D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, C. Zhou, Nano Lett. 2006, 6, 1880.
- 7M. W. Rowell, M. A. Topinka, M. D. McGehee, H. J. Prall, G. Dennler, N. S. Sariciftci, L. Hu, G. Gruner, Appl. Phys. Lett. 2006, 88, 233506.
- 8J. Jiang, J. Liu, W. Zhou, J. Zhu, X. Huang, X. Qi, H. Zhang, T. Yu, Energy Environ. Sci. 2011, 4, 5000.
- 9T. Y. Tsai, C. Y. Lee, N. H. Tai, W. H. Tuan, Appl. Phys. Lett. 2009, 95, 013107.
- 10Y. Zhang, S. Wang, X. Li, J. A. Fan, S. Xu, Y. M. Song, K. J. Choi, W. H. Yeo, W. Lee, S. N. Nazaar, B. Lu, L. Yin, K. C. Hwang, J. A. Rogers, Y. Huang, Adv. Funct. Mater. 2014, 24, 2028.
- 11M. T. Rahman, A. Rahimi, S. Gupta, R. Panat, Sens. Actuators, A 2016, 248, 94.
- 12V. Rajendran, A. M. V. Mohan, M. Jayaraman, T. Nakagawa, Nano Energy 2019, 65, 104055.
- 13Y. J. Jung, S. Kar, S. Talapatra, C. Soldano, G. Viswanathan, X. Li, Z. Yao, F. S. Ou, A. Avadhanula, R. Vajtai, S. Curran, O. Nalamasu, P. M. Ajayan, Nano Lett. 2006, 6, 413.
- 14J. H. Lee, J. H. Shin, Y. H. Kim, S. M. Park, P. S. Alegaonkar, J. B. Yoo, Adv. Mater. 2009, 21, 1257.
- 15D. Kim, K.-S. Yun, Microsyst. Technol. 2013, 19, 743.
- 16M. P. N. Bui, S. Lee, K. N. Han, X. H. Pham, C. A. Li, J. Choo, G. H. Seong, Chem. Commun. 2009, 5549.
- 17K. N. Han, C. A. Li, M. P. N. Bui, G. H. Seong, Langmuir 2010, 26, 598.
- 18L. L. Wang, B. K. Tay, K. Y. See, Z. Sun, L. K. Tan, D. Lua, Carbon 2009, 47, 1905.
- 19S. Kim, J. Yim, X. Wang, D. D. C. Bradley, S. Lee, J. C. DeMello, Adv. Funct. Mater. 2010, 20, 2310.
- 20T. H. Park, J.-H. Kim, S. Seo, Adv. Funct. Mater. 2020, 30, 2003694.
- 21S. K. Eshkalaka, A. Chinnappan, W. A. D. M. Jayathilaka, M. Khatibzadeh, E. Kowsari, S. Ramakrishna, Appl. Mater. Today 2017, 9, 372.
- 22Y. Gao, M. Xu, G. Yu, J. Tan, F. Xuan, Sens. Actuators, A 2019, 299, 111625.
- 23L.-y. Zhou, J.-z. Fu, Q. Gao, P. Zhao, Y. He, Adv. Funct. Mater. 2020, 30, 1906683.
- 24T. Xiao, C. Qian, R. Yin, K. Wang, Y. Gao, F. Xuan, Adv. Mater. Technol. 2021, 6, 2000745.
- 25Y. Y. Huang, E. M. Terentjev, Polymers 2012, 4, 275.
- 26K. Chiou, S. Byun, J. Kim, J. Huang, Proc. Natl. Acad. Sci. USA 2018, 115, 5703.
- 27J. H. Choi, J. Jegal, W. N. Kim, J. Membr. Sci. 2006, 284, 406.
- 28M. J. O'Connell, P. Boul, L. M. Ericson, C. Huffman, Y. Wang, E. Haroz, C. Kuper, J. Tour, K. D. Ausman, R. E. Smalley, Chem. Phys. Lett. 2001, 342, 265.
- 29E. Miyako, H. Nagata, K. Hirano, T. Hirotsu, Angew. Chem., Int. Ed. 2008, 47, 3610.
- 30Z. Yu, X. Niu, Z. Liu, Q. Pei, Adv. Mater. 2011, 23, 3989.
- 31C. Luo, X. Zuo, L. Wang, E. Wang, S. Song, J. Wang, J. Wang, C. Fan, Y. Cao, Nano Lett. 2008, 8, 4454.
- 32F. Rivadulla, C. Mateo-Mateo, M. A. Correa-Duarte, J. Am. Chem. Soc. 2010, 132, 3751.
- 33C. X. Liu, J. W. Choi, J. Micromech. Microeng. 2009, 19, 085019.
- 34H. Ogihara, H. Kibayashi, T. Saji, ACS Appl. Mater. Interfaces 2012, 4, 4891.
- 35M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, S. J. Kim, S. I. Chae, T. H. Kim, J. H. Kim, T. Hyeon, D. H. Kim, Nat. Commun. 2015, 6, 7149.
- 36S. Cho, N. Kim, K. Song, J. Lee, Langmuir 2016, 32, 7951.
- 37J. Deng, J. Li, P. Chen, X. Fang, X. Sun, Y. Jiang, W. Weng, B. Wang, H. Peng, J. Am. Chem. Soc. 2016, 138, 225.
- 38Z. Tao, Y. Shu, X. Yang, Y. Peng, Q. Chen, H. Zhang, Int. J. Min. Sci. Technol. 2020, 30, 421.
- 39W. Zhang, M. Weng, P. Zhou, L. Chen, Z. Huang, L. Zhang, C. Lui, S. Fan, Carbon 2017, 116, 625.
- 40S. Barison, D. Cabaleiro, S. Rossi, A. Kovtun, M. Melucci, F. Agresti, Colloids Surf., A 2021, 627, 127132.
- 41C. J. Zhang, L. McKeon, M. P. Kremer, S.-H. Park, O. Ronan, A. Seral-Ascaso, S. Barwich, C. Ó. Coileáin, N. McEvoy, H. C. Nerl, B. Anasori, J. N. Coleman, Y. Gogotsi, V. Nicolosi, Nat. Commun. 2019, 10, 1795.
- 42K.-d. Seong, J.-Y. Jung, J. Kang, D.-S. Kim, L. Lyu, S. Seo, J.-H. Kim, Y. Piao, J. Mater. Chem. A 2020, 8, 25986.
- 43A. Chen, C. Zhang, G. Zhu, Z. L. Wang, Adv. Sci. 2020, 7, 2000186.
- 44S. Lee, J. S. Park, T. R. Lee, Bull. Korean Chem. Soc. 2011, 32, 41.
- 45B. Jańczuk, T. Białlopiotrowicz, J. Colloid Interface Sci. 1989, 127, 189.
- 46J. S. Hong, C. Kim, Rheol. Acta 2011, 50, 955.
- 47J. Yong, F. Chen, Q. Yang, J. Huo, X. Hou, Chem. Soc. Rev. 2017, 46, 4168.
- 48S. Wu, Polymer Interface and Adhesion, Marcel Dekker, New York 1982.
- 49W. W. Liu, B. Y. Xia, X. X. Wang, J. N. Wang, Front. Mater. Sci. 2012, 6, 176.
- 50L. F. M. da Silva, A. Öchsner, R. D. Adams, Handbook of Adhesion Technology, Springer Heidelberg, Berlin 2011.
10.1007/978-3-642-01169-6 Google Scholar
- 51S. S. Magendran, F. S. A. Khan, N. M. Mubarak, M. Khalid, R. Walvekar, E. C. Abdullah, S. Nizamuddin, R. R. Karri, Nano-Struct. Nano-Objects 2019, 19, 100361.
- 52A. Misra, P. Kumar, Sci. Rep. 2013, 3, 2056.
- 53C. fu Chen, J. Adhes. Sci. Technol. 2018, 32, 1239.
- 54A. Kavosi, S. H. G. Noei, S. Madani, S. Khalighfard, S. Khodayari, H. Khodayari, M. Mirzaei, M. R. Kalhori, M. Yavarian, A. M. Alizadeh, M. Falahati, Sci. Rep. 2018, 8, 8375.
- 55K. Kumara, K. Sharmaa, S. Vermaa, N. Upadhyaya, Mater. Today: Proc. 2019, 18, 5158.
10.1016/j.matpr.2019.07.513 Google Scholar
- 56E. Delamarche, H. Schmid, B. Michel, H. Biebuyck, Adv. Mater. 1997, 9, 741.
- 57Y. Xia, G. M. Whitesides, Angew. Chem., Int. Ed. 1998, 37, 550.
10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G CAS PubMed Web of Science® Google Scholar
- 58D. Qin, Y. Xia, G. M. Whitesides, Nat. Protoc. 2010, 5, 491.
- 59L. Han, X. Jia, Z. Li, Z. Yang, G. Wang, G. Ning, Ind. Eng. Chem. Res. 2018, 57, 13026.
- 60G. Fredi, A. Dorigato, L. Fambri, A. Pegoretti, Polymers 2017, 9, 405.
- 61Y. Zaho, M. Byshkin, Y. Cong, T. Kawakatsu, L. Guadagno, A. D. Nicola, N. Yu, G. Milano, B. Dong, Nanoscale 2016, 8, 15538.
- 62S. R. A. Ruth, V. R. Feig, M. Kim, Y. Khan, J. K. Phong, Z. Bao, Small Struct. 2021, 2, 2000079.
- 63L. Yang, Y. Wang, Y. Guo, W. Zhang, Z. Zhao, Adv. Mater. Interfaces 2019, 6, 1901547.
- 64X. Guo, L. E. Helseth, Mater. Res. Express 2015, 2, 015302.
- 65D. Choi, H. Lee, D. J. Im, I. S. Kang, G. Lim, D. S. Kim, K. H. Kang, Sci. Rep. 2013, 3, 2037.
- 66Z. L. Wang, Faraday Discuss. 2014, 176, 447.
- 67Y. Su, X. Wen, G. Zhu, J. Yang, J. Chen, P. Bai, Z. Wu, Y. Jiang, Z. L. Wang, Nano Energy 2014, 9, 186.
- 68B. K. Yun, H. S. Kim, Y. J. Ko, G. Murillo, J. H. Jung, Nano Energy 2017, 36, 233.
- 69S. Jang, M. La, S. Cho, Y. Yun, J. H. Choi, Y. Ra, S. J. Park, D. Choi, Nano Energy 2020, 70, 104541.
- 70J.-H. Kim, M. J. Han, S. Seo, J. Polym. Sci., Part B: Polym. Phys. 2015, 53, 453.