Novel 3D Nanoporous Zn–Cu Alloy as Long-Life Anode toward High-Voltage Double Electrolyte Aqueous Zinc-Ion Batteries
Botian Liu
Guangdong Institute of Semiconductor Industrial Technology Guangdong, Guangdong Academy of Sciences, Guangzhou, 510650 China
Department of Chemistry and Biological Engineering, Guilin University of Technology, Guilin, 541004 China
Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Department of Physics, Jinan University, Guangzhou, 510632 China
Search for more papers by this authorSongjie Wang
Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Department of Physics, Jinan University, Guangzhou, 510632 China
Search for more papers by this authorZilong Wang
Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Department of Physics, Jinan University, Guangzhou, 510632 China
Search for more papers by this authorHang Lei
Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Department of Physics, Jinan University, Guangzhou, 510632 China
Search for more papers by this authorCorresponding Author
Zhitao Chen
Guangdong Institute of Semiconductor Industrial Technology Guangdong, Guangdong Academy of Sciences, Guangzhou, 510650 China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Wenjie Mai
Guangdong Institute of Semiconductor Industrial Technology Guangdong, Guangdong Academy of Sciences, Guangzhou, 510650 China
Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Department of Physics, Jinan University, Guangzhou, 510632 China
E-mail: [email protected], [email protected]
Search for more papers by this authorBotian Liu
Guangdong Institute of Semiconductor Industrial Technology Guangdong, Guangdong Academy of Sciences, Guangzhou, 510650 China
Department of Chemistry and Biological Engineering, Guilin University of Technology, Guilin, 541004 China
Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Department of Physics, Jinan University, Guangzhou, 510632 China
Search for more papers by this authorSongjie Wang
Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Department of Physics, Jinan University, Guangzhou, 510632 China
Search for more papers by this authorZilong Wang
Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Department of Physics, Jinan University, Guangzhou, 510632 China
Search for more papers by this authorHang Lei
Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Department of Physics, Jinan University, Guangzhou, 510632 China
Search for more papers by this authorCorresponding Author
Zhitao Chen
Guangdong Institute of Semiconductor Industrial Technology Guangdong, Guangdong Academy of Sciences, Guangzhou, 510650 China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Wenjie Mai
Guangdong Institute of Semiconductor Industrial Technology Guangdong, Guangdong Academy of Sciences, Guangzhou, 510650 China
Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Department of Physics, Jinan University, Guangzhou, 510632 China
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
The recharge ability of zinc metal-based aqueous batteries is greatly limited by the zinc anode. The poor cycling durability of Zn anodes is attributed to the dendrite growth, shape change and passivation, but this issue has been ignored by using an excessive amount of Zn in the past. Herein, a 3D nanoporous (3D NP) Zn–Cu alloy is fabricated by a sample electrochemical-assisted annealing thermal method combined, which can be used directly as self-supported electrodes applied for renewable zinc-ion devices. The 3D NP architectures electrode offers high electron and ion transport paths and increased material loading per unit substrate area, which can uniformly deposit/strip Zn and improve charge storage ability. Benefiting from the intrinsic materials and architectures features, the 3D NP Zn–Cu alloy anode exhibits high areal capacity and excellent cycling stability. Further, the fabricated high-voltage double electrolyte aqueous Zn–Br2 battery can deliver maximum areal specific capacity of ≈1.56 mAh cm−2, which is close to the level of typical commercial Li-ion batteries. The excellent performance makes it an ideal candidate for next-generation aqueous zinc-ion batteries.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll202001323-sup-0001-SuppMat.pdf954 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Chu, Y. Cui, N. Liu, Nat. Mater. 2017, 16, 16.
- 2Y. Wu, N. Liu, Chem 2018, 4, 38.
- 3Y. Zhang, N. Liu, Chem. Mater. 2017, 29, 9589.
- 4B. Obama, Science 2017, 355, 126.
- 5Y. Liang, Y. Jing, S. Gheytani, K. Y. Lee, P. Liu, A. Facchetti, Y. Yao, Nat. Mater. 2017, 16, 841.
- 6T. S. Wang, Y. C. Liu, Y. X. Lu, Y. S. Hu, L. Z. Fan, Energy Storage Mater. 2018, 15, 274.
- 7M. L. Mao, C. Y. Cui, M. G. Wu, M. Zhang, T. Gao, X. L. Fan, J. Chen, T. H. Wang, J. M. Ma, C. S. Wang, Nano Energy 2018, 45, 346.
- 8W. Wang, J. H. Zhou, Z. P. Wang, L. Y. Zhao, P. Li, Y. Yang, S. Guo, Adv. Energy Mater. 2018, 8, 1701648.
- 9P. Wang, H. S. Chen, N. Li, X. Y. Zhang, S. Q. Jiao, W. L. Song, D. N. Fang, Energy Storage Mater. 2018, 13, 103.
- 10J. Joseph, J. Nerkar, C. Tang, A. Du, A. P. O'Mullan, K. Ostrikov, ChemSusChem 2019, 12, 3753.
- 11M. Q. Zhao, C. E. Ren, M. Alhabeb, B. Anasori, M. W. Barsoum, Y. Gogotsi, ACS Appl. Energy Mater. 2019, 2, 1572.
- 12G. Li, B. Huang, Z. Pan, X. Su, Z. Shao, L. An, Energy Environ. Sci. 2019, 12, 2030.
- 13Y. Xu, W. Cao, Y. Yin, J. Sheng, Q. An, Q. Wei, W. Yang, L. Mai, Nano Energy 2019, 55, 526.
- 14N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, J. Chen, J. Mater. Chem. C 2016, 138, 12894.
- 15G. Li, Z. Yang, Y. Jiang, C. Jin, W. Huang, X. Ding, Y. Huang, Nano Energy 2016, 25, 211.
- 16M. H. Alfaruqi, V. Mathew, J. Gim, S. Kim, J. Song, J. P. Baboo, S. H. Choi, J. Kim, Chem. Mater. 2015, 27, 3609.
- 17Q. Yang, G. J. Liang, Y. Guo, Z. X. Liu, B. X. Yan, D. H. Wang, Z. D. Huang, X. L. Li, J. Fan, C. Y. Zhi, Adv. Mater. 2019, 31, 1903778.
- 18G. J. Liang, F. N. Mo, Q. Yang, Z. D. Huang, X. L. Li, D. H. Wang, Z. X. Liu, H. F. Li, Q. Zhang, C. Y. Zhi, Adv. Mater. 2019, 31, 1905873.
- 19C. Xia, J. Guo, Y. Lei, H. Liang, C. Zhao, H. N. Alshareef, Adv. Mater. 2018, 30, 1705580.
- 20T. H. Wu, Y. Zhang, Z. D. Althouse, N. Liu, Mater. Today Nano 2019, 6, 100032.
- 21S. Chabi, C. Peng, D. Hu, Y. Zhu, Adv. Mater. 2014, 26, 2440.
- 22J. Xu, X. Wang, X. Wang, D. Chen, X. Chen, D. Li, G. Shen, ChemElectroChem 2014, 1, 975.
- 23B. L. Ellis, P. Knauth, T. Djenizian, Adv. Mater. 2014, 26, 3368.
- 24Y. Zhu, C. H. Sow, T. Yu, Q. Zhao, P. Li, Z. Shen, D. P. Yu, J. T. Thong, Adv. Funct. Mater. 2006, 16, 2415.
- 25C. X. Zhao, Y. F. Li, J. Zhou, L. Y. Li, S. Z. Deng, N. S. Xu, J. Chen, Cryst. Growth Des. 2013, 13, 2897.
- 26S. Ren, Y. F. Bai, J. Chen, S. Z. Deng, N. S. Xu, Q. B. Wu, S. H. Yang, Mater. Lett. 2007, 61, 666.
- 27J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Nature 2001, 410, 450.
- 28J. Erlebacher, J. Electrochem. Soc. 2004, 151, C614.
- 29B. Assouli, A. Srhiri, H. Idrissi, NDT&E Int. 2003, 36, 117.
- 30B. Li, Z. Nie, M. Vijayakumar, G. Li, J. Liu, V. Sprenkle, W. Wang, Nat. Commun. 2015, 6, 6303.
- 31G. M. Weng, Z. Li, G. Cong, Y. Zhou, Y. C. Lu, Energy Environ. Sci. 2017, 10, 735.
- 32H. Tian, Z. Li, G. Cong, Y. Zhou, Y. C. Lu, Nat. Commun. 2017, 8, 14083.
- 33B. Evanko, S. J. Yoo, J. Lipton, S. E. Chun, M. Moskovits, X. Ji, G. D. Stucky, Energy Environ. Sci. 2018, 11, 2865.
- 34J. Luo, D. A. Vermaas, D. Bi, A. Hagfeldt, W. A. Smith, M. Grätzel, Adv. Energy Mater. 2016, 6, 1600100.
- 35P. Cai, Y. Li, G. Wang, Z. Wen, Angew. Chem. 2018, 130, 3974.
10.1002/ange.201712765 Google Scholar
- 36T. Thomberg, A. Jänes, E. Lust, J. Electroanal. Chem. 2009, 630, 55.
- 37Y. Zhong, X. Xia, F. Shi, J. Zhan, J. Tu, H. J. Fan, Adv. Sci. 2016, 3, 1500286.
- 38W. Lai, C. K. Erdonmez, T. F. Marinis, C. K. Bjune, N. J. Dudney, F. Xu, Y. M. Chang, Adv. Mater. 2010, 22, E139.
- 39N. J. Dudney, Mater. Sci. Eng., B 2005, 116, 245.
- 40J. H. Pikul, H. G. Zhang, J. Cho, P. V. Braun, W. P. King, Nat. Commun. 2013, 4, 1732.
- 41M. Yan, P. He, Y. Chen, S. Wang, Q. Wei, K. Zhao, X. Xu, Q. An, Y. Shuang, Y. Shao, K. T. Mueller, L. Mai, J. Liu, J. Yang, Adv. Mater. 2018, 30, 1703725.
- 42A. M. Gaikwad, G. L. Whiting, D. A. Steingart, A. C. Arias, Adv. Mater. 2011, 23, 3251.
- 43J. I. Hur, L. C. Smith, B. Dunn, Joule 2018, 2, 1187.
- 44J. S. Kim, T. H. Hwang, B. G. Kim, J. Min, J. W. Choi, Adv. Funct. Mater. 2014, 24, 5359.
- 45Z. Lin, T. Liu, X. Ai, C. Liang, Nat. Commun. 2018, 9, 5262.
- 46S. Sohn, T. Kang, J. Alloys Compd. 2002, 335, 281.
- 47J. Yan, Z. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, L. J. Zhi, F. Wei, Adv. Funct. Mater. 2012, 22, 2632.
- 48H. Wang, R. Wang, Z. Song, H. Zhang, H. Z. Zhang, Y. Wang, X. Li, J. Mater. Chem. A 2019, 7, 13050.
- 49D. L. Chao, X. H. Xia, J. L. Liu, C. F. Ng, J. Y. Lin, Z. X. Shen, H. J. Fan, Adv. Mater. 2014, 26, 5794.