Oxygen-Deficient Ferric Oxide as an Electrochemical Cathode Catalyst for High-Energy Lithium–Sulfur Batteries
Kezhong Lv
Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorPengfei Wang
Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorChao Wang
Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorZihan Shen
Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorZhenda Lu
Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorHuigang Zhang
Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorMingbo Zheng
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009 P. R. China
Search for more papers by this authorCorresponding Author
Ping He
Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Haoshen Zhou
Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093 P. R. China
Energy Technology Research Institute, National Institute of Advanced Industrial Science Technology (AIST), Umezono 1-1-1, Tsukuba, 3058568 Japan
E-mail: [email protected], [email protected]
Search for more papers by this authorKezhong Lv
Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorPengfei Wang
Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorChao Wang
Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorZihan Shen
Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorZhenda Lu
Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorHuigang Zhang
Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093 P. R. China
Search for more papers by this authorMingbo Zheng
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009 P. R. China
Search for more papers by this authorCorresponding Author
Ping He
Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Haoshen Zhou
Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093 P. R. China
Energy Technology Research Institute, National Institute of Advanced Industrial Science Technology (AIST), Umezono 1-1-1, Tsukuba, 3058568 Japan
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
Lithium–sulfur batteries, as one of promising next-generation energy storage devices, hold great potential to meet the demands of electric vehicles and grids due to their high specific energy. However, the sluggish kinetics and the inevitable “shuttle effect” severely limit the practical application of this technology. Recently, design of composite cathode with effective catalysts has been reported as an essential way to overcome these issues. In this work, oxygen-deficient ferric oxide (Fe2O3−x), prepared by lithiothermic reduction, is used as a low-cost and effective cathodic catalyst. By introducing a small amount of Fe2O3−x into the cathode, the battery can deliver a high capacity of 512 mAh g−1 over 500 cycles at 4 C, with a capacity fade rate of 0.049% per cycle. In addition, a self-supporting porous S@KB/Fe2O3−x cathode with a high sulfur loading of 12.73 mg cm−2 is prepared by freeze-drying, which can achieve a high areal capacity of 12.24 mAh cm−2 at 0.05 C. Both the calculative and experimental results demonstrate that the Fe2O3−x has a strong adsorption toward soluble polysulfides and can accelerate their subsequent conversion to insoluble products. As a result, this work provides a low-cost and effective catalyst candidate for the practical application of lithium–sulfur batteries.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll202000870-sup-0001-SuppMat.pdf680.9 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) H. Li, Z. Wang, L. Chen, X. Huang, Adv. Mater. 2009, 21, 4593; b) Y. Makimura, T. Sasaki, T. Nonaka, Y. F. Nishimura, T. Uyama, C. Okuda, Y. Itou, Y. Takeuchi, J. Mater. Chem. A 2016, 4, 8350; c) R. Marom, S. F. Amalraj, N. Leifer, D. Jacob, D. Aurbach, J. Mater. Chem. 2011, 21, 9938.
- 2a) Y. Cao, M. Li, J. Lu, J. Liu, K. Amine, Nat. Nanotechnol. 2019, 14, 200; b) C. Wang, J. Yang, T. Li, Z. Shen, T. Guo, H. Zhang, Z. Lu, ACS Appl. Mater. Interfaces 2020, 12, 5750.
- 3a) C. Li, Z. Xi, D. Guo, X. Chen, L. Yin, Small 2018, 14, 1701986; b) A. Manthiram, Y. Fu, Y.-S. Su, Acc. Chem. Res. 2013, 46, 1125.
- 4C. Barchasz, J.-C. Leprêtre, F. Alloin, S. J. Patoux, J. Power Sources 2012, 199, 322.
- 5W. Kou, G. Chen, Y. Liu, W. Guan, X. Li, N. Zhang, G. He, J. Mater. Chem. A 2019, 7, 20614.
- 6a) J. Zhou, H. Ji, J. Liu, T. Qian, C. Yan, Energy Storage Mater. 2019, 22, 256; b) X. Wu, N. Liu, M. Wang, Y. Qiu, B. Guan, D. Tian, Z. Guo, L. Fan, N. Zhang, ACS Nano 2019, 13, 13109.
- 7H. J. Peng, J. Q. Huang, X. B. Cheng, Q. Zhang, Adv. Energy Mater. 2017, 7, 1700260.
- 8a) Y. B. He, S. Y. Bai, Z. Chang, Q. Li, Y. Qiao, H. S. Zhou, J. Mater. Chem. A 2018, 6, 9032; b) F. Chen, J. Yang, T. Bai, B. Long, X. Zhou, Electrochim. Acta 2016, 192, 99.
- 9J. Shen, X. Xu, J. Liu, Z. Liu, F. Li, R. Hu, J. Liu, X. Hou, Y. Feng, Y. Yu, M. Zhu, ACS Nano 2019, 13, 8986.
- 10P. Wang, J. Bao, K. Lv, N. Zhang, Z. Chang, P. He, H. Zhou, ACS Appl. Mater. Interfaces 2019, 11, 35788.
- 11S. Tu, X. Chen, X. Zhao, M. Cheng, P. Xiong, Y. He, Q. Zhang, Y. Xu, Adv. Mater. 2018, 30, 8.
- 12H. J. Peng, G. Zhang, X. Chen, Z. W. Zhang, W. T. Xu, J. Q. Huang, Q. Zhang, Angew. Chem., Int. Ed. 2016, 55, 12990.
- 13a) Q. Pang, A. Shyamsunder, B. Narayanan, C. Y. Kwok, L. A. Curtiss, L. F. Nazar, Nat. Energy 2018, 3, 783; b) Z. Guo, B. Zhang, D. Li, T. Zhao, P. R. Coxon, C. J. Harris, R. Hao, Y. Liu, K. Xi, X. Li, Electrochim. Acta 2017, 230, 181.
- 14Y. Tao, Y. Wei, Y. Liu, J. Wang, W. Qiao, L. Ling, D. Long, Energy Environ. Sci. 2016, 9, 3230.
- 15G. Babu, N. Masurkar, H. Al Salem, L. M. R. Arava, J. Am. Chem. Soc. 2017, 139, 171.
- 16J. He, A. Manthiram, Adv. Energy Mater. 2019, 1903241.
- 17Z. Shen, M. Cao, Z. Zhang, J. Pu, C. Zhong, J. Li, H. Ma, F. Li, J. Zhu, F. Pan, H. Zhang, Adv. Funct. Mater. 2020, 30, 1906661.
- 18M. Fang, Z. Chen, Y. Liu, J. Quan, C. Yang, L. Zhu, Q. Xu, Q. Xu, J. Mater. Chem. A 2018, 6, 1630.
- 19Y. Yang, Y. Zhong, Q. Shi, Z. Wang, K. Sun, H. Wang, Angew. Chem. 2018, 130, 15775.
10.1002/ange.201808311 Google Scholar
- 20S. D. Seo, D. Park, S. Park, D. W. Kim, Adv. Funct. Mater. 2019, 29, 1903712.
- 21S.-H. Chung, L. Luo, A. Manthiram, ACS Energy Lett. 2018, 3, 568.
- 22J. He, G. Hartmann, M. Lee, G. S. Hwang, Y. Chen, A. Manthiram, Energy Environ. Sci. 2019, 12, 344.
- 23P. Guo, K. Sun, X. Shang, D. Liu, Y. Wang, Q. Liu, Y. Fu, D. He, Small 2019, 15, 1902363.
- 24E. P. Kamphaus, P. B. Balbuena, J. Phys. Chem. C 2016, 120, 4296.
- 25C. Zheng, S. Niu, W. Lv, G. Zhou, J. Li, S. Fan, Y. Deng, Z. Pan, B. Li, F. Kang, Nano Energy 2017, 33, 306.
- 26H.-E. Wang, K. Yin, N. Qin, X. Zhao, F.-J. Xia, Z.-Y. Hu, G. Guo, G. Cao, W. Zhang, J. Mater. Chem. A 2019, 7, 10346.
- 27Y. Wang, R. Zhang, J. Chen, H. Wu, S. Lu, K. Wang, H. Li, C. J. Harris, K. Xi, R. V. Kumar, Adv. Energy Mater. 2019, 9, 1900953.
- 28H.-E. Wang, X. Li, N. Qin, X. Zhao, H. Cheng, G. Cao, W. Zhang, J. Mater. Chem. A 2019, 7, 12068.
- 29X. Li, G. Guo, N. Qin, Z. Deng, Z. Lu, D. Shen, X. Zhao, Y. Li, B.-L. Su, H.-E. Wang, Nanoscale 2018, 10, 15505.
- 30W. Dong, D. Wang, X. Li, Y. Yao, X. Zhao, Z. Wang, H.-E. Wang, Y. Li, L. Chen, D. Qian, J. Energy Chem. 2020, 48, 259.
- 31G. Ou, Y. S. Xu, B. Wen, R. Lin, B. H. Ge, Y. Tang, Y. W. Liang, C. Yang, K. Huang, D. Zu, R. Yu, W. X. Chen, J. Li, H. Wu, L. M. Liu, Y. D. Li, Nat. Commun. 2018, 9, 1302.
- 32H. Jia, H. Liang, Z. Wang, C. Li, X. Zheng, Y. Cai, J. Qi, J. Cao, J. Feng, W. Fei, Dalton Trans. 2019, 48, 8623.
- 33G. Wang, Y. Ling, H. Wang, X. Yang, C. Wang, J. Z. Zhang, Y. Li, Energy Environ. Sci. 2012, 5, 6180.
- 34C. Zhang, S. Liu, T. Chen, Z. Li, J. Hao, Chem. Commun. 2019, 55, 7370.
- 35a) S. Kobayashi, C. A. Fisher, A. Kuwabara, Y. Ukyo, Y. Ikuhara, Microscropy 2017, 66, 254; b) M. J. Zachman, Z. Tu, S. Choudhury, L. A. Archer, L. F. Kourkoutis, Nature 2018, 560, 345.
- 36H. Lin, L. Yang, X. Jiang, G. Li, T. Zhang, Q. Yao, G. W. Zheng, J. Y. Lee, Energy Environ. Sci. 2017, 10, 1476.
- 37Z.-L. Xu, S. Lin, N. Onofrio, L. Zhou, F. Shi, W. Lu, K. Kang, Q. Zhang, S. P. Lau, Nat. Commun. 2018, 9, 4164.
- 38R. Pongilat, K. Nallathamby, ACS Appl. Mater. Interfaces 2018, 10, 38853.