Strain-Mediated Phase Stabilization: A New Strategy for Ultrastable α-CsPbI3 Perovskite by Nanoconfined Growth
Sunihl Ma
Department of Materials Science and Engineering, Yonsei University, Seoul, 03722 Republic of Korea
Search for more papers by this authorSeong Hun Kim
Department of Materials Science and Engineering and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
Search for more papers by this authorBeomjin Jeong
Department of Materials Science and Engineering, Yonsei University, Seoul, 03722 Republic of Korea
Search for more papers by this authorHyeok-Chan Kwon
Department of Materials Science and Engineering, Yonsei University, Seoul, 03722 Republic of Korea
Search for more papers by this authorSeong-Cheol Yun
Department of Materials Science and Engineering, Yonsei University, Seoul, 03722 Republic of Korea
Search for more papers by this authorGyumin Jang
Department of Materials Science and Engineering, Yonsei University, Seoul, 03722 Republic of Korea
Search for more papers by this authorHyunha Yang
Department of Materials Science and Engineering, Yonsei University, Seoul, 03722 Republic of Korea
Search for more papers by this authorCheolmin Park
Department of Materials Science and Engineering, Yonsei University, Seoul, 03722 Republic of Korea
Search for more papers by this authorCorresponding Author
Donghwa Lee
Department of Materials Science and Engineering and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Jooho Moon
Department of Materials Science and Engineering, Yonsei University, Seoul, 03722 Republic of Korea
E-mail: [email protected], [email protected]Search for more papers by this authorSunihl Ma
Department of Materials Science and Engineering, Yonsei University, Seoul, 03722 Republic of Korea
Search for more papers by this authorSeong Hun Kim
Department of Materials Science and Engineering and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
Search for more papers by this authorBeomjin Jeong
Department of Materials Science and Engineering, Yonsei University, Seoul, 03722 Republic of Korea
Search for more papers by this authorHyeok-Chan Kwon
Department of Materials Science and Engineering, Yonsei University, Seoul, 03722 Republic of Korea
Search for more papers by this authorSeong-Cheol Yun
Department of Materials Science and Engineering, Yonsei University, Seoul, 03722 Republic of Korea
Search for more papers by this authorGyumin Jang
Department of Materials Science and Engineering, Yonsei University, Seoul, 03722 Republic of Korea
Search for more papers by this authorHyunha Yang
Department of Materials Science and Engineering, Yonsei University, Seoul, 03722 Republic of Korea
Search for more papers by this authorCheolmin Park
Department of Materials Science and Engineering, Yonsei University, Seoul, 03722 Republic of Korea
Search for more papers by this authorCorresponding Author
Donghwa Lee
Department of Materials Science and Engineering and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Jooho Moon
Department of Materials Science and Engineering, Yonsei University, Seoul, 03722 Republic of Korea
E-mail: [email protected], [email protected]Search for more papers by this authorAbstract
All-inorganic cesium lead triiodide (CsPbI3) perovskite is considered a promising solution-processable semiconductor for highly stable optoelectronic and photovoltaic applications. However, despite its excellent optoelectronic properties, the phase instability of CsPbI3 poses a critical hurdle for practical application. In this study, a novel stain-mediated phase stabilization strategy is demonstrated to significantly enhance the phase stability of cubic α-phase CsPbI3. Careful control of the degree of spatial confinement induced by anodized aluminum oxide (AAO) templates with varying pore sizes leads to effective manipulation of the phase stability of α-CsPbI3. The Williamson–Hall method in conjunction with density functional theory calculations clearly confirms that the strain imposed on the perovskite lattice when confined in vertically aligned nanopores can alter the formation energy of the system, stabilizing α-CsPbI3 at room temperature. Finally, the CsPbI3 grown inside nanoporous AAO templates exhibits exceptional phase stability over three months under ambient conditions, in which the resulting light-emitting diode reveals a natural red color emission with very narrow bandwidth (full width at half maximum of 33 nm) at 702 nm. The universally applicable template-based stabilization strategy can give in-depth insights on the strain-mediated phase transition mechanism in all-inorganic perovskites.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll201900219-sup-0001-S1.pdf1.6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, S. I. Seok, Science 2017, 356, 1376.
- 2a) C. X. Bao, J. Yang, S. Bai, W. D. Xu, Z. B. Yan, Q. Y. Xu, J. M. Liu, W. J. Zhang, F. Gao, Adv. Mater. 2018, 30, 1803422; b) L. Su, Z. X. Zhao, H. Y. Li, J. Yuan, Z. L. Wang, G. Z. Cao, G. Zhu, ACS Nano 2015, 9, 11310; c) H. Wang, D. H. Kim, Chem. Soc. Rev. 2017, 46, 5204.
- 3C. Gu, J. S. Lee, ACS Nano 2016, 10, 5413.
- 4a) J. H. Heo, D. H. Shin, J. K. Park, D. H. Kim, S. J. Lee, S. H. Im, Adv. Mater. 2018, 30, 1801743; b) Q. S. Chen, J. Wu, X. Y. Ou, B. L. Huang, J. Almutlaq, A. A. Zhumekenov, X. W. Guan, S. Y. Han, L. L. Liang, Z. G. Yi, J. Li, X. J. Xie, Y. Wang, Y. Li, D. Y. Fan, D. B. L. Teh, A. H. All, O. F. Mohammed, O. M. Bakr, T. Wu, M. Bettinelli, H. H. Yang, W. Huang, X. G. Liu, Nature 2018, 561, 88.
- 5S. Y. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. C. Xing, T. C. Sum, Y. M. Lam, Energy Environ. Sci. 2014, 7, 399.
- 6a) E. Edri, S. Kirmayer, A. Henning, S. Mukhopadhyay, K. Gartsman, Y. Rosenwaks, G. Hodes, D. Cahen, Nano Lett. 2014, 14, 1000; b) G. C. Xing, N. Mathews, S. Y. Sun, S. S. Lim, Y. M. Lam, M. Gratzel, S. Mhaisalkar, T. C. Sum, Science 2013, 342, 344.
- 7a) S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Science 2013, 342, 341; b) C. Wehrenfennig, M. Z. Liu, H. J. Snaith, M. B. Johnston, L. M. Herz, Energy Environ. Sci. 2014, 7, 2269; c) C. S. Jiang, M. J. Yang, Y. Y. Zhou, B. To, S. U. Nanayakkara, J. M. Luther, W. L. Zhou, J. J. Berry, J. van de Lagemaat, N. P. Padture, K. Zhu, M. M. Al-Jassim, Nat. Commun. 2015, 6, 8397.
- 8a) Y. G. Rong, L. F. Liu, A. Y. Mei, X. Li, H. W. Han, Adv. Energy Mater. 2015, 5, 1501066; b) T. Leijtens, G. E. Eperon, N. K. Noel, S. N. Habisreutinger, A. Petrozza, H. J. Snaith, Adv. Energy Mater. 2015, 5, 1500963.
- 9G. D. Niu, X. D. Guo, L. D. Wang, J. Mater. Chem. A 2015, 3, 8970.
- 10T. Leijtens, K. Bush, R. Cheacharoen, R. Beal, A. Bowring, M. D. McGehee, J. Mater. Chem. A 2017, 5, 11483.
- 11J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, S. I. Seok, Nano Lett. 2013, 13, 1764.
- 12a) J. P. Correa-Baena, M. Saliba, T. Buonassisi, M. Gratzel, A. Abate, W. Tress, A. Hagfeldt, Science 2017, 358, 739; b) M. Gratzel, Acc. Chem. Res. 2017, 50, 487.
- 13G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, H. J. Snaith, Energy Environ. Sci. 2014, 7, 982.
- 14Q. F. Han, S. H. Bae, P. Y. Sun, Y. T. Hsieh, Y. Yang, Y. S. Rim, H. X. Zhao, Q. Chen, W. Z. Shi, G. Li, Y. Yang, Adv. Mater. 2016, 28, 2253.
- 15Z. Li, M. J. Yang, J. S. Park, S. H. Wei, J. J. Berry, K. Zhu, Chem. Mater. 2016, 28, 284.
- 16a) T. A. Berhe, W. N. Su, C. H. Chen, C. J. Pan, J. H. Cheng, H. M. Chen, M. C. Tsai, L. Y. Chen, A. A. Dubale, B. J. Hwang, Energy Environ. Sci. 2016, 9, 323; b) B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D'Haen, L. D'Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. De Angelis, H. G. Boyen, Adv. Energy Mater. 2015, 5, 1500477.
- 17Y. P. Fu, H. M. Zhu, C. C. Stoumpos, Q. Ding, J. Wang, M. G. Kanatzidis, X. Y. Zhu, S. Jin, ACS Nano 2016, 10, 7963.
- 18G. E. Eperon, G. M. Paterno, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli, H. J. Snaith, J. Mater. Chem. A 2015, 3, 19688.
- 19R. E. Beal, D. J. Slotcavage, T. Leijtens, A. R. Bowring, R. A. Belisle, W. H. Nguyen, G. F. Burkhard, E. T. Hoke, M. D. McGehee, J. Phys. Chem. Lett. 2016, 7, 746.
- 20C. C. Stoumpos, C. D. Malliakas, M. G. Kanatzidis, Inorg. Chem. 2013, 52, 9019.
- 21H. Choi, J. Jeong, H. B. Kim, S. Kim, B. Walker, G. H. Kim, J. Y. Kim, Nano Energy 2014, 7, 80.
- 22L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, Nano Lett. 2015, 15, 3692.
- 23X. M. Li, Y. Wu, S. L. Zhang, B. Cai, Y. Gu, J. Z. Song, H. B. Zeng, Adv. Funct. Mater. 2016, 26, 2435.
- 24S. Dastidar, C. J. Hawley, A. D. Dillon, A. D. Gutierrez-Perez, J. E. Spanier, A. T. Fafarman, J. Phys. Chem. Lett. 2017, 8, 1278.
- 25M. L. Lai, Q. Kong, C. G. Bischak, Y. Yu, L. T. Dou, S. W. Eaton, N. S. Ginsberg, P. D. Yang, Nano Res. 2017, 10, 1107.
- 26B. Li, Y. A. Zhang, L. Fu, T. Yu, S. J. Zhou, L. Y. Zhang, L. W. Yin, Nat. Commun. 2018, 9, 1076.
- 27Q. Wang, X. P. Zheng, Y. H. Deng, J. J. Zhao, Z. L. Chen, J. S. Huang, Joule 2017, 1, 371.
- 28P. F. Luo, W. Xia, S. W. Zhou, L. Sun, J. G. Cheng, C. X. Xu, Y. W. Lu, J. Phys. Chem. Lett. 2016, 7, 3603.
- 29Y. Q. Hu, F. Bai, X. B. Liu, Q. M. Ji, X. L. Miao, T. Qiu, S. F. Zhang, ACS Energy Lett. 2017, 2, 2219.
- 30M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, D. Cahen, J. Phys. Chem. Lett. 2016, 7, 167.
- 31R. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, B. A. Kamino, J. B. Patel, M. T. Horantner, M. B. Johnston, A. A. Haghighirad, D. T. Moore, H. J. Snaith, Adv. Energy Mater. 2016, 6, 1502458.
- 32a) Q. S. Ma, S. J. Huang, X. M. Wen, M. A. Green, A. W. Y. Ho-Baillie, Adv. Energy Mater. 2016, 6, 1502202; b) C. Y. Chen, H. Y. Lin, K. M. Chiang, W. L. Tsai, Y. C. Huang, C. S. Tsao, H. W. Lin, Adv. Mater. 2017, 29, 1605290.
- 33a) M. C. Caracoche, P. C. Rivas, A. F. Pasquevich, A. R. L. Garcia, E. Aglietti, A. Scian, J. Mater. Res. 1993, 8, 605; b) M. H. Frey, D. A. Payne, Phys. Rev. B 1996, 54, 3158.
- 34B. Li, Y. N. Zhang, L. Y. Zhang, L. W. Yin, Adv. Mater. 2017, 29, 1701221.
- 35a) S. Lee, J. Feldman, S. S. Lee, Cryst. Growth Des. 2016, 16, 4744; b) X. Q. Kong, K. Shayan, S. Lee, C. Ribeiro, S. Strauf, S. S. Lee, Nanoscale 2018, 10, 8320.
- 36B. D. Hamilton, I. Weissbuch, M. Lahav, M. A. Hillmyer, M. D. Ward, J. Am. Chem. Soc. 2009, 131, 2588.
- 37Q. Jiang, C. H. Hu, M. D. Ward, J. Am. Chem. Soc. 2013, 135, 2144.
- 38H. C. Kwon, A. Kim, H. Lee, D. Lee, S. Jeong, J. Moon, Adv. Energy Mater. 2016, 6, 1601055.
- 39B. Jeong, H. Han, Y. J. Choi, S. H. Cho, E. H. Kim, S. W. Lee, J. S. Kim, C. Park, D. Kim, C. Park, Adv. Funct. Mater. 2018, 28, 1706401.
- 40P. Y. Wang, X. W. Zhang, Y. Q. Zhou, Q. Jiang, Q. F. Ye, Z. M. Chu, X. X. Li, X. L. Yang, Z. G. Yin, J. B. You, Nat. Commun. 2018, 9, 2225.
- 41T. Y. Zhang, M. I. Dar, G. Li, F. Xu, N. J. Guo, M. Gratzel, Y. X. Zhao, Sci. Adv. 2017, 3, e1700841.
- 42B. Y. Zhao, S. F. Jin, S. Huang, N. Liu, J. Y. Ma, D. J. Xue, Q. W. Han, J. Ding, Q. Q. Ge, Y. Q. Feng, J. S. Hu, J. Am. Chem. Soc. 2018, 140, 11716.
- 43X. J. Zheng, C. C. Wu, S. K. Jha, Z. Li, K. Zhu, S. Priya, ACS Energy Lett. 2016, 1, 1014.
- 44H. W. Jang, S. H. Baek, D. Ortiz, C. M. Folkman, R. R. Das, Y. H. Chu, P. Shafer, J. X. Zhang, S. Choudhury, V. Vaithyanathan, Y. B. Chen, D. A. Felker, M. D. Biegalski, M. S. Rzchowski, X. Q. Pan, D. G. Schlom, L. Q. Chen, R. Ramesh, C. B. Eom, Phys. Rev. Lett. 2008, 101, 107602.
- 45a) Y. S. Zhao, J. Z. Zhang, J. Appl. Crystallogr. 2008, 41, 1095; b) A. Pramanick, X. P. Wang, C. Hoffmann, S. O. Diallo, M. R. V. Jorgensen, X. L. Wang, Phys. Rev. B 2015, 92, 174103.
- 46R. V. Zucker, D. Chatain, U. Dahmen, S. Hagege, W. C. Carter, J. Mater. Sci. 2012, 47, 8290.
- 47K. H. Wong, K. Ananthanarayanan, S. R. Gajjela, P. Balaya, Mater. Chem. Phys. 2011, 125, 553.
- 48Y. P. Fu, M. T. Rea, J. Chen, D. J. Morrow, M. P. Hautzinger, Y. Z. Zhao, D. X. Pan, L. H. Manger, J. C. Wright, R. H. Goldsmith, S. Jin, Chem. Mater. 2017, 29, 8385.
- 49H. C. Kwon, W. Yang, D. Lee, J. Ahn, E. Lee, S. Ma, K. Kim, S. C. Yun, J. Moon, ACS Nano 2018, 12, 4233.
- 50a) J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, A. Walsh, Nano Lett. 2014, 14, 2584; b) A. Waleed, M. M. Tavakoli, L. L. Gu, Z. Y. Wang, D. Q. Zhang, A. Manikandan, Q. P. Zhang, R. J. Zhang, Y. L. Chueh, Z. Y. Fan, Nano Lett. 2017, 17, 523.
- 51E. M. Sanehira, A. R. Marshall, J. A. Christians, S. P. Harvey, P. N. Ciesielski, L. M. Wheeler, P. Schulz, L. Y. Lin, M. C. Beard, J. M. Luther, Sci. Adv. 2017, 3, eaao4204.
- 52W. W. Chen, J. Y. Hao, W. Hu, Z. G. Zang, X. S. Tang, L. Fang, T. C. Niu, M. Zhou, Small 2017, 13, 1604085.
- 53J. Even, L. Pedesseau, J. M. Jancu, C. Katan, J. Phys. Chem. Lett. 2013, 4, 2999.