A Nonpresodiate Sodium-Ion Capacitor with High Performance
Shaohui Li
School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798 Singapore
Search for more papers by this authorJingwei Chen
School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798 Singapore
Singapore-HUJ Alliance for Research and Enterprise (SHARE), Nanomaterials for Energy and Water Nexus (NEW), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602 Singapore
Search for more papers by this authorXuefei Gong
School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798 Singapore
Search for more papers by this authorJiangxin Wang
School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798 Singapore
Search for more papers by this authorCorresponding Author
Pooi See Lee
School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798 Singapore
Singapore-HUJ Alliance for Research and Enterprise (SHARE), Nanomaterials for Energy and Water Nexus (NEW), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602 Singapore
E-mail: [email protected]Search for more papers by this authorShaohui Li
School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798 Singapore
Search for more papers by this authorJingwei Chen
School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798 Singapore
Singapore-HUJ Alliance for Research and Enterprise (SHARE), Nanomaterials for Energy and Water Nexus (NEW), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602 Singapore
Search for more papers by this authorXuefei Gong
School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798 Singapore
Search for more papers by this authorJiangxin Wang
School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798 Singapore
Search for more papers by this authorCorresponding Author
Pooi See Lee
School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798 Singapore
Singapore-HUJ Alliance for Research and Enterprise (SHARE), Nanomaterials for Energy and Water Nexus (NEW), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602 Singapore
E-mail: [email protected]Search for more papers by this authorAbstract
Sodium-ion capacitors (SICs) have received intensive attention due to their high energy density, high power density, long cycle life, and low cost of sodium. However, the lack of high-performance anode materials and the tedious presodiation process hinders the practical applications of SICs. A simple and effective strategy is reported to fabricate a high-performance SIC using Fe1−xS as the anode material and an ether-based electrolyte. The Fe1−xS electrode is found to undergo a reversible intercalation reaction after the first cycle, resulting in fast kinetics and excellent reversibility. The Fe1−xS electrode delivers a high capacity of 340 mAh g−1 at 0.05 A g−1, 179 mAh g−1 at high current of 5 A g−1 and an ultralong cycling performance with 95% capacity retention after 7000 cycles. Coupled with a carbon-based cathode, a high-performance SIC without the presodiation process is successfully fabricated. The hybrid device demonstrates an excellent energy density of 88 Wh kg−1 and superior power density of 11 500 W kg−1, as well as an ultralong lifetime of 9000 cycles with over 93% capacity retention. An innovative and efficient way to fabricate SICs with both high energy and power density utilizing ether-based electrolytes can be realized to eliminate the presodiation process.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll201804035-sup-0001-S1.pdf686.9 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang, L. Fu, Y. Zhu, Q. Zhou, Y. Wu, W. Huang, Chem. Soc. Rev. 2017, 46, 6816.
- 2H. Wang, C. Zhu, D. Chao, Q. Yan, H. J. Fan, Adv. Mater. 2017, 29, 1702093.
- 3J. Y. Hwang, S. T. Myung, Y. K. Sun, Chem. Soc. Rev. 2017, 46, 3529.
- 4K. Kang, Y. S. Meng, J. Breger, P. G. Grey, G. Ceder, Science 2006, 311, 977.
- 5V. Aravindan, M. Ulaganathan, S. Madhavi, J. Mater. Chem. A 2016, 4, 7538.
- 6S. Li, J. Chen, M. Cui, G. Cai, J. Wang, P. Cui, X. Gong, P. S. Lee, Small 2017, 13, 1602893.
- 7S. Li, D. Huang, B. Zhang, X. Xu, M. Wang, G. Yang, Y. Shen, Adv. Energy Mater. 2014, 4, 1301655.
- 8L. Niu, Y. Wang, F. Ruan, C. Shen, S. Shan, M. Xu, Z. Sun, C. Li, X. Liu, Y. Gong, J. Mater. Chem. A 2016, 4, 5669.
- 9P. Jez·owski, O. Crosnier, E. Deunf, P. Poizot, F. Béguin, T. Brousse, Nat. Mater. 2017, 17, 167.
- 10W. Luo, F. Shen, C. Bommier, H. Zhu, X. Ji, L. Hu, Acc. Chem. Res. 2016, 49, 231.
- 11J. Chen, S. Li, V. Kumar, P. S. Lee, Adv. Energy Mater. 2017, 7, 1700180.
- 12C. Bommier, D. Mitlin, X. Ji, Prog. Mater. Sci. 2018, 97, 170.
- 13K. Kuratani, M. Yao, H. Senoh, N. Takeichi, T. Sakai, T. Kiyobayashi, Electrochim. Acta 2012, 76, 320.
- 14T. Wei, G. Yang, C. Wang, ACS Appl. Mater. Interfaces 2017, 9, 31861.
- 15R. Thangavel, B. Moorthy, D. K. Kim, Y.-S. Lee, Adv. Energy Mater. 2017, 7, 1602654.
- 16Y.-E. Zhu, L. Yang, J. Sheng, Y. Chen, H. Gu, J. Wei, Z. Zhou, Adv. Energy Mater. 2017, 7, 1701222.
- 17K.-T. Kim, G. Ali, K. Y. Chung, C. S. Yoon, H. Yashiro, Y.-K. Sun, J. Lu, K. Amine, S.-T. Myung, Nano Lett. 2014, 14, 416.
- 18Y. Xu, E. M. Lotfabad, H. Wang, B. Farbod, Z. Xu, A. Kohandehghan, D. Mitlin, Chem. Commun. 2013, 49, 8973.
- 19Z. Le, F. Liu, P. Nie, X. Li, X. Liu, Z. Bian, G. Chen, H. B. Wu, Y. Lu, ACS Nano 2017, 11, 2952.
- 20E. Lim, C. Jo, M. S. Kim, M.-H. Kim, J. Chun, H. Kim, J. Park, K. C. Roh, K. Kang, S. Yoon, J. Lee, Adv. Funct. Mater. 2016, 26, 3711.
- 21H. Li, Y. Zhu, S. Dong, L. Shen, Z. Chen, X. Zhang, G. Yu, Chem. Mater. 2016, 28, 5753.
- 22S. Dong, L. Wu, J. Wang, P. Nie, H. Dou, X. Zhang, J. Mater. Chem. A 2017, 5, 5806.
- 23S. Dong, L. Shen, H. Li, G. Pang, H. Dou, X. Zhang, Adv. Funct. Mater. 2016, 26, 3703.
- 24X. Wang, S. Kajiyama, H. Iinuma, E. Hosono, S. Oro, I. Moriguchi, M. Okubo, A. Yamada, Nat. Commun. 2015, 6, 6544.
- 25L. David, R. Bhandavat, G. Singh, ACS Nano 2014, 8, 1759.
- 26J. Ding, H. Wang, Z. Li, K. Cui, D. Karpuzov, X. Tan, A. Kohandehghan, D. Mitlin, Energy Environ. Sci. 2015, 8, 941.
- 27H. Wang, D. Mitlin, J. Ding, Z. Li, K. Cui, J. Mater. Chem. A 2016, 4, 5149.
- 28S. Dong, Y. Xu, L. Wu, H. Dou, X. Zhang, Energy Storage Mater. 2018, 11, 8.
- 29J. Ding, Z. Li, K. Cui, S. Boyer, D. Karpuzov, D. Mitlin, Nano Energy 2016, 23, 129.
- 30F. Wang, X. Wang, Z. Chang, X. Wu, X. Liu, L. Fu, Y. Zhu, Y. Wu, W. Huang, Adv. Mater. 2015, 27, 6962.
- 31L.-F. Que, F.-D. Yu, K.-W. He, Z.-B. Wang, D.-M. Gu, Chem. Mater. 2017, 29, 9133.
- 32H. Che, S. Chen, Y. Xie, H. Wang, K. Amine, X.-Z. Liao, Z.-F. Ma, Energy Environ. Sci. 2017, 10, 1075.
- 33B. Jache, P. Adelhelm, Angew. Chem., Int. Ed. 2014, 53, 10169.
- 34J. Zhang, D.-W. Wang, W. Lv, S. Zhang, Q. Liang, D. Zheng, F. Kang, Q.-H. Yang, Energy Environ. Sci. 2017, 10, 370.
- 35K. Zhang, M. Park, L. Zhou, G.-H. Lee, W. Li, Y.-M. Kang, J. Chen, Adv. Funct. Mater. 2016, 26, 6728.
- 36C. Wang, L. Wang, F. Li, F. Cheng, J. Chen, Adv. Mater. 2017, 29, 1702212.
- 37D. Su, K. Kretschmer, G. Wang, Adv. Energy Mater. 2016, 6, 1501785.
- 38Z. Hu, L. Wang, K. Zhang, J. Wang, F. Cheng, Z. Tao, J. Chen, Angew. Chem. 2014, 126, 13008.
10.1002/ange.201407898 Google Scholar
- 39Z. Hu, Z. Zhu, F. Cheng, K. Zhang, J. Wang, C. Chen, J. Chen, Energy Environ. Sci. 2015, 8, 1309.
- 40C. Wang, M. Lan, Y. Zhang, H. Bian, M.-F. Yuen, K. Ostrikov, J. Jiang, W. Zhang, Y. Y. Li, J. Lu, Green Chem. 2016, 18, 3029.
- 41L. Li, S. Peng, N. Bucher, H.-Y. Chen, N. Shen, A. Nagasubramanian, E. Eldho, S. Hartung, S. Ramakrishna, M. Srinivasan, Nano Energy 2017, 37, 81.
- 42Q. Li, Q. Wei, W. Zuo, L. Huang, W. Luo, Q. An, V. O. Pelenovich, L. Mai, Q. Zhang, Chem. Sci. 2017, 8, 160.
- 43Z. Yuan, L. Wang, J. Wang, S. Xia, P. Chen, Z. Hou, X. Zheng, Appl. Catal., B 2011, 101, 431.
- 44Q. Wang, W. Zhang, C. Guo, Y. Liu, C. Wang, Z. Guo, Adv. Funct. Mater. 2017, 27, 1703390.
- 45F. Wang, C. Wang, Y. Zhao, Z. Liu, Z. Chang, L. Fu, Y. Zhu, Y. Wu, D. Zhao, Small 2016, 12, 6207.
- 46F. Wang, Z. Liu, X. Yuan, J. Mo, C. Li, L. Fu, Y. Zhu, X. Wu, Y. Wu, J. Mater. Chem. A 2017, 5, 14922.