In Situ Fabrication of Heterostructure on Nickel Foam with Tuned Composition for Enhancing Water-Splitting Performance
Xuerong Zheng
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072 China
Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072 China
Search for more papers by this authorYiqi Zhang
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorHui Liu
School of Materials Science and Engineering, Engineering Laboratory of Functional Optoelectronic Crystalline Materials of Hebei Province, Hebei University of Technology, Tianjin, 300132 P. R. China
Search for more papers by this authorDongju Fu
Research Institute of Tsinghua University in Shenzhen, Guangdong, 518057 China
Search for more papers by this authorJianjun Chen
Research Institute of Tsinghua University in Shenzhen, Guangdong, 518057 China
Search for more papers by this authorJihui Wang
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorCheng Zhong
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072 China
Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072 China
Search for more papers by this authorYida Deng
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorCorresponding Author
Xiaopeng Han
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072 China
Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072 China
Research Institute of Tsinghua University in Shenzhen, Guangdong, 518057 China
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071 China
E-mail: [email protected]Search for more papers by this authorWenbin Hu
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072 China
Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072 China
Search for more papers by this authorXuerong Zheng
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072 China
Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072 China
Search for more papers by this authorYiqi Zhang
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorHui Liu
School of Materials Science and Engineering, Engineering Laboratory of Functional Optoelectronic Crystalline Materials of Hebei Province, Hebei University of Technology, Tianjin, 300132 P. R. China
Search for more papers by this authorDongju Fu
Research Institute of Tsinghua University in Shenzhen, Guangdong, 518057 China
Search for more papers by this authorJianjun Chen
Research Institute of Tsinghua University in Shenzhen, Guangdong, 518057 China
Search for more papers by this authorJihui Wang
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorCheng Zhong
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072 China
Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072 China
Search for more papers by this authorYida Deng
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorCorresponding Author
Xiaopeng Han
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072 China
Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072 China
Research Institute of Tsinghua University in Shenzhen, Guangdong, 518057 China
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071 China
E-mail: [email protected]Search for more papers by this authorWenbin Hu
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072 China
Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072 China
Search for more papers by this authorAbstract
Exploiting economical and high-performance bifunctional electrocatalysts toward hydrogen and oxygen evolution reactions (HER/OER) is at the heart of overall water splitting in large-scale application. Herein, an in situ and stepwise strategy for synthesizing core–shell Ni3(S1−xSex)2@NiOOH (0 ≤ x ≤ 1) nanoarray heterostructures on nickel foam with tailored compositions for enhancing water-splitting performance is reported. A series of Ni3(S1−xSex)2 nanostructures is firstly grown on nickel foam via an in situ reaction in a heated polyol solution system. Ni3(S1−xSex)2@NiOOH nanocomposites are subsequently prepared via electrochemical oxidation and the oxidation degree is systematically investigated by varying the oxidation time. Benefitting from the vertical standing architecture, abundant exposed active sites, and synergetically interfacial enhancement, Ni3(S0.25Se0.75)2@NiOOH heterojunctions with electrochemical polarization for 8 h exhibit superior HER and OER behaviors, achieving a water-splitting current density of 10 mA cm−2 at a small overpotential of 320 mV as well as boosted reaction kinetics and long-term stability. This work should shed light on the controllable synthesis of metal-based hybrid materials and provide a promising direction for developing the highest-performing electrocatalysts based on interfacial and heterostructural regulation for advanced electrochemical energy conversion technologies.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll201803666-sup-0001-S1.pdf1.5 MB | Supplementary |
smll201803666-sup-0001-S2.mp44.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1F. M. Wang, A. S. Tofik, X. Y. Zhan, Y. Huang, K. L. Liu, Z. Cheng, C. Jiang, J. He, Nanoscale 2015, 7, 19764.
- 2M. H. Yu, S. B. Zhao, H. B. Feng, L. Hu, X. Y. Zhang, Y. X. Zeng, Y. X. Tong, X. H. Lu, ACS Energy Lett. 2017, 2, 1862.
- 3J. G. Hou, Y. Q. Sun, Y. Z. Wu, S. Y. Cao, L. C. Sun, Adv. Funct. Mater. 2018, 28, 1704447.
- 4X. P. Han, X. Y. Wu, Y. D. Deng, J. Liu, J. Lu, C. Zhong, W. B. Hu, Adv. Energy Mater. 2018, 8, 1800935.
- 5M. T. Koper, J. Electroanal. Chem. 2011, 660, 254.
- 6A. Sivanantham, S. Shanmugam, Appl. Catal., B 2017, 203, 485.
- 7Y. Zheng, Y. Jiao, M. Jaroniec, S. Z. Qiao, Angew. Chem., Int. Ed. 2015, 54, 52.
- 8X. R. Zheng, X. P. Han, H. Liu, J. Chen, D. J. Fu, J. H. Wang, C. Zhong, Y. D. Deng, W. B. Hu, ACS Appl. Mater. Interfaces 2018, 10, 13675.
- 9T. Reier, M. Oezaslan, P. Strasser, ACS Catal. 2012, 2, 1765.
- 10Y. Zhang, J. F. Zhang, Z. L. Chen, Y. W. Liu, M. Zhang, X. P. Han, C. Zhong, W. B. Hu, Y. D. Deng, Sci. China Mater. 2018, 61, 697.
- 11Y. Feng, X. Y. Yu, U. Paik, Chem. Commun. 2016, 52, 6269.
- 12J. Chi, H. Yu, B. Qin, L. Fu, J. Jia, B. Yi, Z. Shao, ACS Appl. Mater. Interfaces 2017, 9, 464.
- 13W. Zhu, X. Yue, W. Zhang, S. Yu, Y. Zhang, J. Wang, J. Wang, Chem. Commun. 2016, 52, 1486.
- 14X. Xu, P. Du, Z. Chen, M. Huang, J. Mater. Chem. A 2016, 4, 10933.
- 15J. G. Hou, Y. Q. Sun, Z. W. Li, B. Zhang, S. Y. Cao, Y. Z. Wu, Z. M. Gao, L. C. Sun, Adv. Funct. Mater. 2018, 28, 1803278.
- 16D. S. Kong, H. T. Wang, Z. Y. Lu, Y. Cui, J. Am. Chem. Soc. 2014, 136, 4897.
- 17H. X. Zhang, B. Yang, X. L. Wu, Z. J. Li, L. C. Lei, X. W. Zhang, ACS Appl. Mater. Interfaces 2015, 7, 1772.
- 18J. G. Hou, B. Zhang, Z. W. Li, S. Y. Cao, Y. Q. Sun, Y. Z. Wu, Z. M. Gao, L. C. Sun, ACS Catal. 2018, 8, 4612.
- 19X. L. Zhou, Y. Liu, H. X. Ju, B. C. Pan, J. F. Zhu, T. Ding, C. D. Wang, Q. Yang, Chem. Mater. 2016, 28, 1838.
- 20S. J. Deng, Y. Zhong, Y. X. Zeng, Y. D. Wang, X. L. Wang, X. H. Lu, X. H. Xia, J. P. Tu, Adv. Sci. 2018, 5, 1700772.
- 21X. W. Xu, Y. C. Ge, M. Wang, Z. Q. Zhang, P. Dong, R. Baines, M. X. Ye, J. F. Shen, ACS Appl. Mater. Interfaces 2016, 8, 18036.
- 22Y. B. Li, C. Zhong, J. Liu, X. Q. Zeng, S. X. Qu, X. P. Han, Y. D. Deng, W. B. Hu, J. Lu, Adv. Mater. 2018, 30, 1703657.
- 23C. Tang, N. Y. Cheng, Z. H. Pu, W. Xing, X. P. Sun, Angew. Chem., Int. Ed. 2015, 54, 9351.
- 24X. Chen, B. Liu, C. Zhong, Z. Liu, J. Liu, L. Ma, Y. D. Deng, X. P. Han, T. P. Wu, W. B. Hu, J. Lu, Adv. Energy Mater. 2017, 7, 1700779.
- 25M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li, S. Jin, J. Am. Chem. Soc. 2013, 135, 10274.
- 26Y. Yan, B. Y. Xia, X. M. Ge, Z. L. Liu, J. Y. Wang, X. Wang, ACS Appl. Mater. Interfaces 2013, 5, 12794.
- 27K. L. Liu, F. M. Wang, K. Xu, T. A. Shifa, Z. Cheng, X. Y. Zhan, J. He, Nanoscale 2016, 8, 4699.
- 28K. Xu, F. M. Wang, Z. X. Wang, X. Y. Zhan, Q. S. Wang, Z. Cheng, M. Safdar, J. He, ACS Nano 2014, 8, 8468.
- 29C. Xia, H. F. Liang, J. Zhu, U. Schwingenschlögl, H. N. Alshareef, Adv. Energy Mater. 2017, 7, 1602089.
- 30Q. F. Gong, L. Cheng, C. H. Liu, M. Zhang, Q. L. Feng, H. L. Ye, M. Zeng, L. M. Xie, Z. Liu, Y. G. Li, ACS Catal. 2015, 5, 2213.
- 31Q. Zhao, D. Z. Zhong, L. Liu, D. Li, G. Y. Hao, J. P. Li, J. Mater. Chem. A 2017, 5, 14639.
- 32X. Li, G. Q. Han, Y. R. Liu, B. Dong, W. H. Hu, X. Shang, Y. M. Chai, C. G. Liu, ACS Appl. Mater. Interfaces 2016, 8, 20057.
- 33O. D. Morales, D. F. Suspedra, M. T. M. Koper, Chem. Sci. 2016, 7, 2639.
- 34Q. Zhang, C. Zhang, J. B. Liang, P. G. Yin, Y. Tian, ACS Sustainable Chem. Eng. 2017, 5, 3808.
- 35W. Chen, H. T. Wang, Y. Z. Li, Y. Liu, J. Sun, S. H. Lee, J. S. Lee, Y. Cui, ACS Cent. Sci. 2015, 1, 244.
- 36S. Dutta, A. Indra, Y. Feng, T. Song, U. Paik, ACS Appl. Mater. Interfaces 2017, 9, 33766.
- 37K. Xu, H. Ding, H. F. Lv, S. Tao, P. Z. Chen, X. J. Wu, W. S. Chu, C. Z. Wu, Y. Xie, ACS Catal. 2017, 7, 310.
- 38J. Ryu, N. Jung, J. H. Jang, H. J. Kim, S. J. Yoo, ACS Catal. 2015, 5, 4066.
- 39Y. P. Zhu, Y. P. Liu, T. Z. Ren, Z. Y. Yuan, Adv. Funct. Mater. 2015, 25, 7337.
- 40K. Xu, H. Ding, H. F. Lv, P. Z. Chen, X. L. Lu, H. Cheng, T. P. Zhou, S. Liu, X. J. Wu, C. Z. Wu, Y. Xie, Adv. Mater. 2016, 28, 3326.
- 41J. F. Chang, Y. Xiao, M. L. Xiao, J. Ge, C. P. Liu, W. Xing, ACS Catal. 2015, 5, 6874.
- 42L. A. Stern, L. G. Feng, F. Song, X. L. Hu, Energy Environ. Sci. 2015, 8, 2347.
- 43J. Liang, Y. Z. Wang, C. C. Wang, S. Y. Lu, J. Mater. Chem. A 2016, 4, 9797.
- 44H. Y. Wang, Y. Y. Hsu, R. Chen, T. S. Chan, H. M. Chen, B. Liu, Adv. Energy Mater. 2015, 5, 1500091.
- 45A. Sivanantham, P. Ganesan, S. Shanmugam, Adv. Funct. Mater. 2016, 26, 4661.
- 46A. Swesi, J. Masud, M. Nath, Energy Environ. Sci. 2016, 9, 1771.
- 47F. C. Lei, Y. F. Sun, K. T. Liu, S. Gao, L. Liang, B. C. Pan, Y. Xie, J. Am. Chem. Soc. 2014, 136, 6826.
- 48J. Bao, X. D. Zhang, B. Fan, J. Zhang, M. Zhou, W. L. Yang, X. Hu, H. Wang, B. C. Pan, Y. Xie, Angew. Chem., Int. Ed. 2015, 54, 7399.
- 49J. Yin, Y. X. Li, F. Lv, M. Lu, K. Sun, W. Wang, L. Wang, F. Y. Cheng, Y. F. Li, P. X. Xi, S. J. Guo, Adv. Mater. 2017, 29, 1704681.
- 50A. Grimaud, O. D. Morales, B. H. Han, W. T. Hong, Y. L. Lee, L. Giordano, K. A. Stoerzinger, M. T. Koper, Nat. Chem. 2017, 9, 457.
- 51X. H. Lu, G. M. Wang, T. Zhai, M. H. Yu, S. L. Xie, Y. C. Ling, C. L. Liang, Y. X. Tong, Y. Li, Nano Lett. 2012, 12, 5376.
- 52L. Fang, W. X. Li, Y. X. Guan, Y. Y. Feng, H. J. Zhang, S. L. Wang, Y. Wang, Adv. Funct. Mater. 2017, 27, 1701008.
- 53J. Bao, X. D. Zhang, B. Fan, J. J. Zhang, M. Zhou, W. L. Yang, X. Hu, H. Wang, B. C. Pan, Y. Xie, Angew. Chem., Int. Ed. 2015, 54, 7399.
- 54X. G. Wang, W. Li, D. H. Xiong, D. Y. Petrovykh, L. F. Liu, Adv. Funct. Mater. 2016, 26, 4067.