Size, Shape, and Protein Corona Determine Cellular Uptake and Removal Mechanisms of Gold Nanoparticles
Lin Ding
Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444 P. R. China
Search for more papers by this authorChenjie Yao
Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444 P. R. China
Harvard School of Public Health, Harvard University, Boston, MA, 02115 USA
Search for more papers by this authorXiaofeng Yin
Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444 P. R. China
Search for more papers by this authorChenchen Li
Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444 P. R. China
Search for more papers by this authorYanan Huang
Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444 P. R. China
Search for more papers by this authorMin Wu
Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444 P. R. China
Search for more papers by this authorBin Wang
Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444 P. R. China
Search for more papers by this authorXiaoya Guo
Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444 P. R. China
Search for more papers by this authorCorresponding Author
Yanli Wang
Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444 P. R. China
Harvard School of Public Health, Harvard University, Boston, MA, 02115 USA
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Minghong Wu
Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444 P. R. China
School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444 P. R. China
E-mail: [email protected], [email protected]Search for more papers by this authorLin Ding
Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444 P. R. China
Search for more papers by this authorChenjie Yao
Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444 P. R. China
Harvard School of Public Health, Harvard University, Boston, MA, 02115 USA
Search for more papers by this authorXiaofeng Yin
Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444 P. R. China
Search for more papers by this authorChenchen Li
Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444 P. R. China
Search for more papers by this authorYanan Huang
Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444 P. R. China
Search for more papers by this authorMin Wu
Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444 P. R. China
Search for more papers by this authorBin Wang
Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444 P. R. China
Search for more papers by this authorXiaoya Guo
Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444 P. R. China
Search for more papers by this authorCorresponding Author
Yanli Wang
Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444 P. R. China
Harvard School of Public Health, Harvard University, Boston, MA, 02115 USA
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Minghong Wu
Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444 P. R. China
School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444 P. R. China
E-mail: [email protected], [email protected]Search for more papers by this authorAbstract
Size, shape, and protein corona play a key role in cellular uptake and removal mechanisms of gold nanoparticles (Au NPs). The 15 nm nanoparticles (NP1), the 45 nm nanoparticles (NP2), and the rod-shaped nanoparticles (NR) enter into cells via a receptor-mediated endocytosis (RME) pathway. The star-shaped nanoparticles (NS) adopt not only clathrin-mediated, but also caveolin-mediated endocytosis pathways. However, the 80 nm nanoparitcles (NP3) mainly enter into the cells by macropinocytosis pathway due to the big size. Furthermore, the results indicate that the presence of protein corona can change the uptake mechanisms of Au NPs. The endocytosis pathway of NP1, NP2, and NS changes from RME to macropinocytosis pathway and NR changes from RME to clathrin and caveolin-independent pathway under the non-fetal bovine serun (FBS)-coated condition. Both FBS-coated and non-FBS-coated of five types of Au NPs are released out through the lysosomal exocytosis pathway. The size, shape, and protein corona have an effect on the exocytosis ratio and amount, but do not change the exocytosis mechanism. The systematic study of the endocytosis and exocytosis mechanism of Au NPs with different sizes and shapes will benefit the toxicology evaluation and nanomedicine application of Au NPs.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll201801451-sup-0001-S1.pdf1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. T. Guo, Y. Y. Huang, Q. A. Jiang, Y. Sun, L. D. Deng, Z. C. Liang, Q. A. Du, J. F. Xing, Y. L. Zhao, P. C. Wang, A. J. Dong, X. J. Liang, ACS Nano 2010, 4, 5505.
- 2a) Y. Cheng, A. C. Samia, J. D. Meyers, I. Panagopoulos, B. Fei, C. Burda, J. Am. Chem. Soc. 2008, 130, 10643; b) T. Wang, X. Zhang, Y. Pan, X. Miao, Z. Su, C. Wang, X. Li, Dalton Trans. 2011, 40, 9789; c) H. Liang, X. B. Zhang, Y. Lv, L. Gong, R. Wang, X. Zhu, R. Yang, W. Tan, Acc. Chem. Res. 2014, 47, 1891.
- 3a) L. Au, J. Chen, L. V. Wang, Y. Xia, Methods Mol. Biol. 2010, 624, 83; b) J. Choi, J. Yang, J. Park, E. Kim, J. S. Suh, Y. M. Huh, S. Haam, Adv. Funct. Mater. 2011, 21, 1082; c) C. M. Maltez-Da, l. E.-M. A. De, C. Nogués, L. Barrios, E. Ibáñez, A. Merkoçi, Nano Lett. 2012, 12, 4164.
- 4L. Gao, M. Q. Liu, G. F. Ma, Y. L. Wang, L. N. Zhao, Q. Yuan, F. P. Gao, R. Liu, J. Zhai, Z. F. Chai, Y. L. Zhao, X. Y. Gao, ACS Nano 2015, 9, 10979.
- 5a) L. G. Xu, Y. Liu, Z. Y. Chen, W. Li, Y. Liu, L. M. Wang, Y. Liu, X. C. Wu, Y. L. Ji, Y. L. Zhao, L. Y. Ma, Y. M. Shao, C. Y. Chen, Nano Lett. 2012, 12, 2003; b) L. M. Wang, Y. Liu, W. Li, X. M. Jiang, Y. L. Ji, X. C. Wu, L. G. Xu, Y. Qiu, K. Zhao, T. T. Wei, Y. F. Li, Y. L. Zhao, C. Y. Chen, Nano Lett. 2011, 11, 772; c) Z. J. Zhang, J. Wang, X. Nie, T. Wen, Y. L. Ji, X. C. Wu, Y. L. Zhao, C. Y. Chen, J. Am. Chem. Soc. 2014, 136, 7317; d) Y. L. Wang, L. Ding, C. J. Yao, C. C. Li, X. J. Xing, Y. A. Huang, T. J. Gu, M. H. Wu, Sci. China Mater. 2017, 60, 93; e) D. Li, Z. M. Tang, Y. Q. Gao, H. L. Sun, S. B. Zhou, Adv. Funct. Mater. 2016, 26, 66.
- 6B. D. Chithrani, A. A. Ghazani, W. C. Chan, Nano Lett. 2006, 6, 662.
- 7S.-H. Wang, C.-W. Lee, A. Chiou, P.-K. Wei, J. Nanobiotechnol. 2010, 8, 33.
- 8T. Chen, X. Guo, X. Liu, S. Shi, J. Wang, C. L. Shi, Z. Y. Qian, S. B. Zhou, Adv. Healthcare Mater. 2012, 1, 214.
- 9E. Harrison, J. R. Nicol, M. Maciasmontero, G. A. Burke, J. A. Coulter, B. J. Meenan, D. Dixon, Mater. Sci. Eng., C 2016, 62, 710.
- 10C. Brandenberger, C. Mühlfeld, Z. Ali, A. G. Lenz, O. Schmid, W. J. Parak, P. Gehr, B. Rothen-Rutishauser, Small 2010, 6, 1669.
- 11a) A. M. Alkilany, P. K. Nagaria, C. R. Hexel, T. J. Shaw, C. J. Murphy, M. D. Wyatt, Small 2009, 5, 701; b) I. C. Lin, M. Liang, T. Y. Liu, M. J. Monteiro, I. Toth, Nanomed-Nanotechnol. 2012, 8, 8.
- 12Y. Qiu, Y. Liu, L. Wang, L. Xu, R. Bai, Y. Ji, X. Wu, Y. Zhao, Y. Li, C. Chen, Biomaterials 2010, 31, 7606.
- 13Y. Jiang, S. Huo, T. Mizuhara, R. Das, Y.-W. Lee, S. Hou, D. F. Moyano, B. Duncan, X.-J. Liang, V. M. Rotello, ACS Nano 2015, 9, 9986.
- 14P. Nativo, I. A. Prior, M. Brust, ACS Nano 2008, 2, 1639.
- 15a) S. Tsai, J. Liaw, F. Hsu, Y. Chen, M. Lyu, M. Yeh, Sensors 2008, 8, 6660; b) E. A. Untener, K. K. Comfort, E. I. Maurer, C. M. Grabinski, D. A. Comfort, S. M. Hussain, ACS Appl. Mater. Interfaces 2013, 5, 8366.
- 16X. Cheng, X. Tian, A. Wu, J. Li, J. Tian, Y. Chong, Z. Chai, Y. Zhao, C. Chen, C. Ge, ACS Appl. Mater. Interfaces 2015, 7, 20568.
- 17A. Lesniak, F. Fenaroli, M. R. Monopoli, C. Aberg, K. A. Dawson, A. Salvati, ACS Nano 2012, 6, 5845.
- 18Y. Li, N. A. Monteiro-Riviere, Nanomedicine 2016, 11, 3185.
- 19B. D. Chithrani, W. C. W. Chan, Nano Lett. 2007, 7, 1542.
- 20K. Saha, S. T. Kim, B. Yan, O. R. Miranda, F. S. Alfonso, D. Shlosman, V. M. Rotello, Small 2013, 9, 300.
- 21P. Wang, X. Wang, L. Wang, X. Hou, W. Liu, C. Chen, Sci. Technol. Adv. Mater. 2015, 16, 034610.
- 22C. G. Khoury, T. Vo-Dinh, J. Phys. Chem. C 2008, 112, 18849.
- 23E. C. Cho, Q. Zhang, Y. Xia, Nat. Nanotechnol. 2011, 6, 385.
- 24a) J. Lin, H. Zhang, Z. Chen, Y. Zheng, ACS Nano 2010, 4, 5421; b) O. Lunov, T. Syrovets, C. Loos, J. Beil, M. Delacher, K. Tron, G. U. Nienhaus, A. Musyanovych, V. Mailänder, K. Landfester, ACS Nano 2011, 5, 1657.
- 25C. M. Goodman, C. D. Mccusker, A. Tuna Yilmaz, V. M. Rotello, Bioconjugate Chem. 2004, 15, 897.
- 26a) Z. Mamdouh, M. C. Giocondi, R. Laprade, G. C. Le, BBA—Biomembranes 1996, 1282, 171; b) T. Baba, H. Ueda, N. Terada, Y. Fujii, S. Ohno, 1999, 47, 637.
- 27H. Gao, W. Shi, L. B. Freund, Proc. Natl. Acad. Sci. USA 2005, 102, 9469.
- 28S. Mayor, R. E. Pagano, Nat. Rev. Mol. Cell Biol. 2007, 8, 603.
- 29H. T. Mcmahon, E. Boucrot, Nat. Rev. Mol. Cell Biol. 2011, 12, 517.
- 30E. Macia, M. Ehrlich, R. Massol, E. Boucrot, C. Brunner, T. Kirchhausen, Dev. Cell 2006, 10, 839.
- 31S. D. Conner, S. L. Schmid, Nature 2003, 422, 37.
- 32a) L. H. Wang, K. G. Rothberg, R. G. Anderson, J. Cell Biol. 1993, 123, 1107; b) J. Rejman, A. Bragonzi, M. Conese, Mol. Ther. 2005, 12, 468.
- 33J. C. Y. Kah, C. Grabinski, E. Untener, C. Garrett, J. Chen, D. Zhu, S. M. Hussain, K. Hamad-Schifferli, ACS Nano 2014, 8, 4608.
- 34N. Oh, J. H. Park, Int. J. Nanomed. 2014, 9, 51.
- 35R. E. Yanes, D. Tarn, A. A. Hwang, D. P. Ferris, S. P. Sherman, C. R. Thomas, J. Lu, A. D. Pyle, J. I. Zink, F. Tamanoi, Small 2013, 9, 697.
- 36J. P. Baumgart, Z. Y. Zhou, M. Hara, D. C. Cook, M. B. Hoppa, T. A. Ryan, H. C. Hemmings Jr., Proc. Natl. Acad. Sci. USA 2015, 112, 11959.
- 37N. Oh, J. H. Park, ACS Nano 2014, 8, 6232.
- 38I. Canton, G. Battaglia, Chem. Soc. Rev. 2012, 41, 2718.
- 39Y. Wang, Q. Wu, K. Sui, X. X. Chen, J. Fang, X. Hu, M. Wu, Y. Liu, Nanoscale 2013, 5, 4737.
- 40X. Jiang, C. Röcker, M. Hafner, S. Brandholt, R. M. Dörlich, G. U. Nienhaus, ACS Nano 2010, 4, 6787.
- 41J. Mazzolini, R. J. Weber, H. S. Chen, A. Khan, E. Guggenheim, R. K. Shaw, J. K. Chipman, M. R. Viant, J. Z. Rappoport, Biol. Bull. 2016, 231, 40.
- 42X. Ji, X. Song, J. Li, Y. Bai, W. Yang, X. Peng, J. Am. Chem. Soc. 2007, 129, 13939.
- 43N. G. Bastús, J. Comenge, V. Puntes, Langmuir 2011, 27, 11098.
- 44N. Z, D. Fava, M. Rubinstein, E. Kumacheva, J. Am. Chem. Soc. 2008, 130, 3683.
- 45J. Xie, J. Y. Lee, D. I. C. Wang, Chem. Mater. 2007, 19, 2823.