Scalable Multiplexed Drug-Combination Screening Platforms Using 3D Microtumor Model for Precision Medicine
Zhixiong Zhang
Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI, 48109-2122 USA
Search for more papers by this authorYu-Chih Chen
Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI, 48109-2122 USA
University of Michigan Comprehensive Cancer Center, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109 USA
Search for more papers by this authorSumithra Urs
University of Michigan Health System, Ann Arbor, MI, 48109 USA
Search for more papers by this authorLili Chen
Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI, 48109-2122 USA
Search for more papers by this authorDiane M. Simeone
University of Michigan Health System, Ann Arbor, MI, 48109 USA
Search for more papers by this authorCorresponding Author
Euisik Yoon
Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI, 48109-2122 USA
Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109 USA
E-mail: [email protected]Search for more papers by this authorZhixiong Zhang
Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI, 48109-2122 USA
Search for more papers by this authorYu-Chih Chen
Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI, 48109-2122 USA
University of Michigan Comprehensive Cancer Center, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109 USA
Search for more papers by this authorSumithra Urs
University of Michigan Health System, Ann Arbor, MI, 48109 USA
Search for more papers by this authorLili Chen
Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI, 48109-2122 USA
Search for more papers by this authorDiane M. Simeone
University of Michigan Health System, Ann Arbor, MI, 48109 USA
Search for more papers by this authorCorresponding Author
Euisik Yoon
Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI, 48109-2122 USA
Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109 USA
E-mail: [email protected]Search for more papers by this authorAbstract
Cancer heterogeneity is a notorious hallmark of this disease, and it is desirable to tailor effective treatments for each individual patient. Drug combinations have been widely accepted in cancer treatment for better therapeutic efficacy as compared to a single compound. However, experimental complexity and cost grow exponentially with more target compounds under investigation. The primary challenge remains to efficiently perform a large-scale drug combination screening using a small number of patient primary samples for testing. Here, a scalable, easy-to-use, high-throughput drug combination screening scheme is reported, which has the potential of screening all possible pairwise drug combinations for arbitrary number of drugs with multiple logarithmic mixing ratios. A “Christmas tree mixer” structure is introduced to generate a logarithmic concentration mixing ratio between drug pairs, providing a large drug concentration range for screening. A three-layer structure design and special inlets arrangement facilitate simple drug loading process. As a proof of concept, an 8-drug combination chip is implemented, which is capable of screening 172 different treatment conditions over 1032 3D cancer spheroids on a single chip. Using both cancer cell lines and patient-derived cancer cells, effective drug combination screening is demonstrated for precision medicine.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
smll201703617-sup-0001-S1.pdf1.8 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. Gonzalez de Castro, P. A. Clarke, B. Al-Lazikani, P. Workman, Clin. Pharmacol. Ther. 2013, 93, 252.
- 2J. Gagan, E. M. Van Allen, Genome Med. 2015, 7, 80.
- 3C. Cummings, E. Peters, L. Lacroix, F. Andre, M. Lackner, Clin. Transl. Sci. 2016, 9, 283.
- 4M. Arnedos, C. Vicier, S. Loi, C. Lefebvre, S. Michiels, H. Bonnefoi, F. Andre, Nat. Rev. Clin. Oncol. 2015, 12, 693.
- 5Y. J. Park, R. Claus, D. Weichenhan, C. Plass, Epigenet. Dis. 2010, 25.
- 6B. Lehner, Nat. Rev. Genet. 2013, 14, 168.
- 7M. Schneider, J. Schüler, R. Höfflin, N. Korzeniewski, C. Grüllich, W. Roth, D. Teber, B. Hadaschik, S. Pahernik, M. Hohenfellner, S. Duensing, Urol. Oncol.: Semin. Orig. Invest. 2014, 32, 877.
- 8W. Zheng, N. Thorne, J. McKew, Drug Discovery Today 2013, 18, 1067.
- 9J. Moffat, J. Rudolph, D. Bailey, Nat. Rev. Drug Discovery 2014, 13, 588.
- 10E. W. Esch, A. Bahinski, D. Huh, Nat. Rev. Drug Discovery 2015, 14, 248.
- 11B. Al-Lazikani, U. Banerji, P. Workman, Nat. Biotechnol. 2012, 30, 679.
- 12R. Fisher, L. Pusztai, C. Swanton, Br. J. Cancer 2013, 108, 479.
- 13K. Masui, B. Gini, J. Wykosky, C. Zanca, P. Mischel, F. Furnari, W. Cavenee, Carcinogenesis 2013, 34, 725.
- 14G. R. Zimmermann, J. Lehár, C. T. Keith, Drug Discovery Today 2007, 12, 34.
- 15C. Holohan, S. Van Schaeybroeck, D. B. Longley, P. G. Johnston, Nat. Rev. Cancer 2013, 13, 714.
- 16V. T. Devita, R. C. Young, G. P. Canellos, Cancer 1975, 35, 98.
10.1002/1097-0142(197501)35:1<98::AID-CNCR2820350115>3.0.CO;2-B PubMed Web of Science® Google Scholar
- 17D. A. Yardley, Int. J. Breast Cancer 2013, 2013, 1.
10.1155/2013/137414 Google Scholar
- 18R. Macarron, M. N. Banks, D. Bojanic, G. S. Sittampalam, Nat. Rev. Drug Discovery 2011, 10, 188.
- 19J. Tang, L. Karhinen, T. Xu, A. Szwajda, B. Yadav, K. Wennerberg, T. Aittokallio, PLoS Comput. Biol. 2013, 9, e1003226.
- 20 US Food and Drug Administration, Guidance for Industry: Codevelopment of Two or More New Investigational Drugs for Use in Combination, 2013, 1.
- 21L. A. M. Griner, R. Guha, P. Shinn, R. M. Young, J. M. Keller, D. Liu, I. S. Goldlust, A. Yasgar, C. Mcknight, M. B. Boxer, D. Y. Duveau, J.-K. Jiang, S. Michael, T. Mierzwa, W. Huang, M. J. Walsh, B. T. Mott, P. Patel, W. Leister, D. J. Maloney, C. A. Leclair, G. Rai, A. Jadhav, B. D. Peyser, C. P. Austin, S. E. Martin, A. Simeonov, M. Ferrer, L. M. Staudt, C. J. Thomas, Proc. Natl. Acad. Sci. USA 2014, 111, 2349.
- 22S. Michael, D. Auld, C. Klumpp-Thomas, A. Jadhav, W. Zheng, N. Thorne, C. Austin, J. Inglese, A. Simeonov, Assay Drug Dev. Technol. 2008, 6, 637.
- 23G.-S. Du, J.-Z. Pan, S.-P. Zhao, Y. Zhu, J. M. D. Toonder, Q. Fang, Anal. Chem. 2013, 85, 6740.
- 24R. Riahi, A. Tamayol, S. A. M. Shaegh, A. M. Ghaemmaghami, M. R. Dokmeci, A. Khademhosseini, Curr. Opin. Chem. Eng. 2015, 7, 101.
- 25Y.-C. Chen, Z. Zhang, S. Fouladdel, Y. Deol, P. N. Ingram, S. P. Mcdermott, E. Azizi, M. S. Wicha, E. Yoon, Lab Chip 2016, 16, 2935.
- 26J. Kim, D. Taylor, N. Agrawal, H. Wang, H. Kim, A. Han, K. Rege, A. Jayaraman, Lab Chip 2012, 12, 1813.
- 27D. An, K. Kim, J. Kim, Biomol. Ther. 2014, 22, 355.
- 28R. Tallarida, L. S. Jacob, Dose-Response Relation in Pharmacology, Springer New York, New York 2012.
- 29B. G. Chung, L. A. Flanagan, S. W. Rhee, P. H. Schwartz, A. P. Lee, E. S. Monuki, N. L. Jeon, Lab Chip 2005, 5, 401.
- 30J. Y. Yun, S. Jambovane, S.-K. Kim, S.-H. Cho, E. C. Duin, J. W. Hong, Anal. Chem. 2011, 83, 6148.
- 31J. H. Tsui, W. Lee, S. H. Pun, J. Kim, D.-H. Kim, Adv. Drug Delivery Rev. 2013, 65, 1575.
- 32D. Antoni, H. Burckel, E. Josset, G. Noel, Int. J. Mol. Sci. 2015, 16, 5517.
- 33A. Nyga, U. Cheema, M. Loizidou, J. Cell Commun. Signaling 2011, 5, 239.
- 34Z. Zhang, Y.-C. Chen, Y.-H. Cheng, Y. Luan, E. Yoon, Lab Chip 2016, 16, 2504.
- 35N. A. Mortensen, F. Okkels, H. Bruus, Phys. Rev. E 2005, 71, 057301.
- 36B. Burtness, L. Thomas, R. Sipples, M. Mcgurk, S. Salikooti, M. Christoforou, G. Mirto, R. Salem, J. Sosa, R. Kloss, Z. Rahman, G. Chung, J. Lacy, J. R. Murren, Cancer J. 2007, 13, 257.
- 37M. W. Oster, R. Gray, L. Panasci, M. C. Perry, Cancer 1986, 57, 29.
10.1002/1097-0142(19860101)57:1<29::AID-CNCR2820570108>3.0.CO;2-L PubMed Web of Science® Google Scholar
- 38T. J. Ettrich, L. Perkhofer, G. V. Wichert, T. M. Gress, P. Michl, H. F. Hebart, P. Büchner-Steudel, M. Geissler, R. Muche, B. Danner, V. Kächele, A. W. Berger, M. Güthle, T. Seufferlein, BMC Cancer 2016, 16, 21.
- 39A. Lipton, C. Campbell-Baird, L. Witters, H. Harvey, S. Ali, J. Clin. Gastroenterol. 2010, 44, 286.
- 40G. Bellone, A. Carbone, V. Busso, T. Scirelli, A. Buffolino, C. Smirne, A. Novarino, O. Bertetto, L. Tosetti, G. Emanuelli, Cancer Biol. Ther. 2006, 5, 1294.
- 41R. K. Mehmood, Oncol. Rev. 2014, 8, 97.
10.4081/oncol.2014.256 Google Scholar
- 42Y. F. Hui, J. Reitz, Am. J. Health-Syst. Pharm. 1997, 54, 162.
- 43S. Y. C. Choi, D. Lin, P. W. Gout, C. C. Collins, Y. Xu, Y. Wang, Adv. Drug Delivery Rev. 2014, 79–80, 222.
- 44https://www.fda.gov/, Center for drug evaluation and research, application number: 207793Orig1s000.
- 45C. Li, D. G. Heidt, P. Dalerba, C. F. Burant, L. Zhang, V. Adsay, M. Wicha, M. F. Clarke, D. M. Simeone, Cancer Res. 2007, 67, 1030.
- 46V. A. Liu, W. E. Jastromb, S. N. Bhatia, J. Biomed. Mater. Res. 2002, 60: 126.
- 47Y.-C. Chen, X. Lou, Z. Zhang, P. Ingram, E. Yoon, Sci. Rep. 2015, 5, 12175.
- 48J. C. Boik, R. A. Newman, R. J. Boik, Stat. Med. 2008, 27, 1040.
- 49J. Foucquier, M. Guedj, Pharmacol. Res. Perspect. 2015, 3, e00149.
- 50T. Panczyk, A. Jagusiak, G. Pastorin, W. H. Ang, J. Narkiewicz-Michalek, J. Phys. Chem. C 2013, 117, 17327.
- 51K. A. Lipinski, L. J. Barber, M. N. Davies, M. Ashenden, A. Sottoriva, M. Gerlinger, Trends Cancer 2016, 2, 49.
- 52R. H. Shoemaker, Nat. Rev. Cancer 2006, 6, 813.