Amino-Acid-Induced Preferential Orientation of Perovskite Crystals for Enhancing Interfacial Charge Transfer and Photovoltaic Performance
Yen-Chen Shih
Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617 Taiwan
Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617 Taiwan
Search for more papers by this authorYu-Bing Lan
Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 10617 Taiwan
Search for more papers by this authorChia-Shuo Li
Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 10617 Taiwan
Department of Electrical Engineering, National Taiwan University, Taipei, 10617 Taiwan
Search for more papers by this authorHsiao-Chi Hsieh
Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617 Taiwan
Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617 Taiwan
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617 Taiwan
Search for more papers by this authorCorresponding Author
Leeyih Wang
Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617 Taiwan
E-mail: [email protected], [email protected]Search for more papers by this authorChih-I Wu
Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 10617 Taiwan
Department of Electrical Engineering, National Taiwan University, Taipei, 10617 Taiwan
Search for more papers by this authorCorresponding Author
King-Fu Lin
Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617 Taiwan
E-mail: [email protected], [email protected]Search for more papers by this authorYen-Chen Shih
Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617 Taiwan
Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617 Taiwan
Search for more papers by this authorYu-Bing Lan
Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 10617 Taiwan
Search for more papers by this authorChia-Shuo Li
Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 10617 Taiwan
Department of Electrical Engineering, National Taiwan University, Taipei, 10617 Taiwan
Search for more papers by this authorHsiao-Chi Hsieh
Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617 Taiwan
Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617 Taiwan
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617 Taiwan
Search for more papers by this authorCorresponding Author
Leeyih Wang
Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617 Taiwan
E-mail: [email protected], [email protected]Search for more papers by this authorChih-I Wu
Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 10617 Taiwan
Department of Electrical Engineering, National Taiwan University, Taipei, 10617 Taiwan
Search for more papers by this authorCorresponding Author
King-Fu Lin
Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617 Taiwan
E-mail: [email protected], [email protected]Search for more papers by this authorAbstract
Interfacial engineering of perovskite solar cells (PSCs) is attracting intensive attention owing to the charge transfer efficiency at an interface, which greatly influences the photovoltaic performance. This study demonstrates the modification of a TiO2 electron-transporting layer with various amino acids, which affects charge transfer efficiency at the TiO2/CH3NH3PbI3 interface in PSC, among which the l-alanine-modified cell exhibits the best power conversion efficiency with 30% enhancement. This study also shows that the (110) plane of perovskite crystallites tends to align in the direction perpendicular to the amino-acid-modified TiO2 as observed in grazing-incidence wide-angle X-ray scattering of thin CH3NH3PbI3 perovskite film. Electrochemical impedance spectroscopy reveals less charge transfer resistance at the TiO2/CH3NH3PbI3 interface after being modified with amino acids, which is also supported by the lower intensity of steady-state photoluminescence (PL) and the reduced PL lifetime of perovskite. In addition, based on the PL measurement with excitation from different side of the sample, amino-acid-modified samples show less surface trapping effect compared to the sample without modification, which may also facilitate charge transfer efficiency at the interface. The results suggest that appropriate orientation of perovskite crystallites at the interface and trap-passivation are the niche for better photovoltaic performance.
Supporting Information
Filename | Description |
---|---|
smll201604305-sup-0001-S1.pdf465.2 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. S. Jung, N.-G. Park, Small 2015, 11, 10.
- 2L. Yang, A. T. Barrows, D. G. Lidzey, T. Wang, Rep. Prog. Phys. 2016, 79, 026501.
- 3Y. Deng, E. Peng, Y. Shao, Z. Xiao, Q. Dong, J. Huang, Energy Environ. Sci. 2015, 8, 1544.
- 4J. S. Ni, H. C. Hsieh, C. A. Chen, Y. S. Wen, W. T. Wu, Y. C. Shih, K. F. Lin, L. Wang, J. T. Lin, ChemSusChem 2016, 9, 3139.
- 5N.-G. Park, Mater. Today 2015, 18, 65.
- 6a) T.-Y. Yang, G. Gregori, N. Pellet, M. Grätzel, J. Maier, Angew. Chem. 2015, 127, 8016; b) Angew. Chem., Int. Ed. Engl. 2015, 54, 7505.
- 7G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, T. C. Sum, Science 2013, 342, 344.
- 8S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Science 2013, 342, 341.
- 9Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Science 2015, 347, 967.
- 10A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
- 11National Renewable Energy Laboratory, Research Cell Efficiency Records, http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (accessed: August 2016).
- 12H. Huang, J. Shi, L. Zhu, D. Li, Y. Luo, Q. Meng, Nano Energy 2016, 27, 17.
- 13T. Leijtens, B. Lauber, G. E. Eperon, S. D. Stranks, H. J. Snaith, J. Phys. Chem. Lett. 2014, 5, 1096.
- 14J.-H. Im, H.-S. Kim, N.-G. Park, APL Mater. 2014, 2, 081510.
- 15L. Liu, A. Mei, T. Liu, P. Jiang, Y. Sheng, L. Zhang, H. Han, J. Am. Chem. Soc. 2015, 137, 1790.
- 16H. B. Kim, I. Im, Y. Yoon, S. D. Sung, E. Kim, J. Kim, W. I. Lee, J. Mater. Chem. A 2015, 3, 9264.
- 17Y. Bai, H. Chen, S. Xiao, Q. Xue, T. Zhang, Z. Zhu, Q. Li, C. Hu, Y. Yang, Z. Hu, F. Huang, K. S. Wong, H.-L. Yip, S. Yang, Adv. Funct. Mater. 2016, 26, 2950.
- 18J. Cao, J. Yin, S. Yuan, Y. Zhao, J. Li, N. Zheng, Nanoscale 2015, 7, 9443.
- 19A. Abrusci, S. D. Stranks, P. Docampo, H.-L. Yip, A. K.-Y. Jen, H. J. Snaith, Nano Lett. 2013, 13, 3124.
- 20K. Wojciechowski, S. D. Stranks, A. Abate, G. Sadoughi, A. Sadhanala, N. Kopidakis, G. Rumbles, C.-Z. Li, R. H. Friend, A. K.-Y. Jen, ACS Nano 2014, 8, 12701.
- 21Y. Dong, W. Li, X. Zhang, Q. Xu, Q. Liu, C. Li, Z. Bo, Small 2016, 12, 1098.
- 22Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, Q. Shen, T. Toyoda, K. Yoshino, S. S. Pandey, T. Ma, S. Hayase, J. Phys. Chem. C 2014, 118, 16651.
- 23L. Zuo, Z. Gu, T. Ye, W. Fu, G. Wu, H. Li, H. Chen, J. Am. Chem. Soc. 2015, 137, 2674.
- 24B. Li, Y. Chen, Z. Liang, D. Gao, W. Huang, RSC Adv. 2015, 5, 94290.
- 25C. Goh, S. R. Scully, M. D. McGehee, J. Appl. Phys. 2007, 101, 114503.
- 26Q. Qu, H. Geng, R. Peng, Q. Cui, X. Gu, F. Li, M. Wang, Langmuir 2010, 26, 9539.
- 27A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, H. Han, Science 2014, 345, 295.
- 28Y. C. Shih, L. Y. Wang, H. C. Hsieh, K. F. Lin, J. Mater. Chem. A 2015, 3, 9133.
- 29T. Qiu, M. A. Barteau, J. Colloid Interface Sci. 2006, 303, 229.
- 30T. J. Lerotholi, E. A. Kröger, M. J. Knight, W. Unterberger, K. Hogan, D. C. Jackson, C. L. A. Lamont, D. P. Woodruff, Surf. Sci. 2009, 603, 2305.
- 31R. Tonner, ChemPhysChem 2010, 11, 1053.
- 32B. Chen, M. Yang, X. Zheng, C. Wu, W. Li, Y. Yan, J. Bisquert, G. Garcia-Belmonte, K. Zhu, S. Priya, J. Phys. Chem. Lett. 2015, 6, 4693.
- 33Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, Nat. Commun. 2014, 5, 5784.
- 34C. Sun, Z. Wu, H.-L. Yip, H. Zhang, X.-F. Jiang, Q. Xue, Z. Hu, Z. Hu, Y. Shen, M. Wang, F. Huang, Y. Cao, Adv. Energy Mater. 2016, 6, 1501534.
- 35Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya, Y. Kanemitsu, J. Am. Chem. Soc. 2014, 136, 11610.
- 36E. M. Hutter, G. E. Eperon, S. D. Stranks, T. J. Savenije, J. Phys. Chem. Lett. 2015, 6, 3082.
- 37Z. U. Zhang, H. Y. Wang, Y. X. Zhang, Y. W. Hao, C. Sun, Y. Zhang, B. R. Gao, Q. D. Chen, H. B. Sun, Sci. Rep. 2016, 6, 27286.
- 38Q. Chen, H. Zhou, T.-B. Song, S. Luo, Z. Hong, H.-S. Duan, L. Dou, Y. Liu, Y. Yang, Nano Lett. 2014, 14, 4158.
- 39C. S. Ponseca Jr., T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J. P. Wolf, V. Sundström, J. Am. Chem. Soc. 2014, 136, 5189.
- 40A. Baumann, K. Tvingstedt, M. C. Heiber, S. Väth, C. Momblona, H. J. Bolink, V. Dyakonov, APL Mater. 2014, 2, 081501.
- 41L. Bertoluzzi, R. S. Sanchez, L. Liu, J.-W. Lee, E. Mas-Marza, H. Han, N.-G. Park, I. Mora-Sero, J. Bisquert, Energy Environ. Sci. 2015, 8, 910.
- 42X. Li, M. I. Dar, C. Yi, J. Luo, M. Tschumi, S. M. Zakeeruddin, M. K. Nazeeruddin, H. Han, M. Grätzel, Nat. Chem. 2015, 7, 703.
- 43K. W. Tan, D. T. Moore, M. Saliba, H. Sai, L. A. Estroff, T. Hanrath, H. J. Snaith, U. Wiesner, ACS Nano 2014, 8, 4730.
- 44W. Huang, F. Huang, E. Gann, Y. B. Cheng, C. R. McNeill, Adv. Funct. Mater. 2015, 25, 5529.
- 45T.-B. Song, Q. Chen, H. Zhou, C. Jiang, H.-H. Wang, Y. M. Yang, Y. Liu, J. You, Y. Yang, J. Mater. Chem. A 2015, 3, 9032.
- 46J. B. Patel, R. L. Milot, A. D. Wright, L. M. Herz, M. B. Johnston, J. Phys. Chem. Lett. 2016, 7, 96.
- 47Y. Wang, T. Gould, J. F. Dobson, H. Zhang, H. Yang, X. Yao, H. Zhao, Phys. Chem. Chem. Phys. 2013, 16, 1424.
- 48F. Brivio, K. T. Butler, A. Walsh, M. Van Schilfgaarde, Phys. Rev. B 2014, 89, 155204.
- 49C. Motta, F. El-Mellouhi, S. Kais, N. Tabet, F. Alharbi, S. Sanvito, Nat. Commun. 2015, 6, 7026.
- 50Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, P. Meredith, Nat. Photonics 2015, 9, 106.
- 51A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T.-W. Wang, S. D. Stranks, H. J. Snaith, R. J. Nicholas, Nat. Phys. 2015, 11, 582.
- 52B. Zhang, M. J. Zhang, S. P. Pang, C. S. Huang, Z. M. Zhou, D. Wang, N. Wang, G. L. Cui, Adv. Mater. Interfaces 2016, 3, 1600327.
- 53J. Haruyama, K. Sodeyama, L. Han, Y. Tateyama, J. Phys. Chem. Lett. 2014, 5, 2903.
- 54S. Y. Leblebici, L. Leppert, Y. Li, S. E. Reyes-Lillo, S. Wickenburg, E. Wong, J. Lee, M. Melli, D. Ziegler, D. K. Angell, D. F. Ogletree, P. D. Ashby, F. M. Toma, J. B. Neaton, I. D. Sharp, A. Weber-Bargioni, Nat. Energy 2016, 1, 16093.
- 55C. Fei, L. Guo, B. Li, R. Zhang, H. Fu, J. Tian, G. Cao, Nano Energy 2016, 27, 17.
- 56G. Niu, H. Yu, J. Li, D. Wang, L. Wang, Nano Energy 2016, 27, 87.
- 57H.-S. Kim, I. Mora-Sero, V. Gonzalez-Pedro, F. Fabregat-Santiago, E. J. Juarez-Perez, N.-G. Park, J. Bisquert, Nat. Commun. 2013, 4, 2242.
- 58A. Dualeh, T. Moehl, N. Tétreault, J. Teuscher, P. Gao, M. K. Nazeeruddin, M. Grätzel, ACS Nano 2013, 8, 362.
- 59X. Xu, H. Zhang, K. Cao, J. Cui, J. Lu, X. Zeng, Y. Shen, M. Wang, ChemSusChem 2014, 7, 3088.
- 60D. Yang, R. Yang, J. Zhang, Z. Yang, S. F. Liu, C. Li, Energy Environ. Sci. 2015, 8, 3208.
- 61D. H. Sin, H. Ko, S. B. Jo, M. Kim, G. Y. Bae, K. Cho, ACS Appl. Mater. Interfaces 2016, 8, 6546.
- 62Y. Xiao, G. Han, Y. Chang, H. Zhou, M. Li, Y. Li, J. Power Sources 2014, 267, 1.
- 63R. S. Sanchez, V. Gonzalez-Pedro, J.-W. Lee, N.-G. Park, Y. S. Kang, I. Mora-Sero, J. Bisquert, J. Phys. Chem. Lett. 2014, 5, 2357.
- 64M. Bag, L. A. Renna, R. Y. Adhikari, S. Karak, F. Liu, P. M. Lahti, T. P. Russell, M. T. Tuominen, D. Venkataraman, J. Am. Chem. Soc. 2015, 137, 13130.