Mechanical Peeling of Free-Standing Single-Walled Carbon-Nanotube Bundles
Corresponding Author
Changhong Ke
Department of Mechanical Engineering State University of New York at Binghamton Binghamton, 13902 NY (USA)
Department of Mechanical Engineering State University of New York at Binghamton Binghamton, 13902 NY (USA).Search for more papers by this authorMeng Zheng
Department of Mechanical Engineering State University of New York at Binghamton Binghamton, 13902 NY (USA)
Search for more papers by this authorGuangwen Zhou
Department of Mechanical Engineering State University of New York at Binghamton Binghamton, 13902 NY (USA)
Search for more papers by this authorWeili Cui
Department of Mechanical Engineering State University of New York at Binghamton Binghamton, 13902 NY (USA)
Search for more papers by this authorNicola Pugno
Department of Structural Engineering Politecnico di Torino, Torino (Italy)
Search for more papers by this authorRonald N. Miles
Department of Mechanical Engineering State University of New York at Binghamton Binghamton, 13902 NY (USA)
Search for more papers by this authorCorresponding Author
Changhong Ke
Department of Mechanical Engineering State University of New York at Binghamton Binghamton, 13902 NY (USA)
Department of Mechanical Engineering State University of New York at Binghamton Binghamton, 13902 NY (USA).Search for more papers by this authorMeng Zheng
Department of Mechanical Engineering State University of New York at Binghamton Binghamton, 13902 NY (USA)
Search for more papers by this authorGuangwen Zhou
Department of Mechanical Engineering State University of New York at Binghamton Binghamton, 13902 NY (USA)
Search for more papers by this authorWeili Cui
Department of Mechanical Engineering State University of New York at Binghamton Binghamton, 13902 NY (USA)
Search for more papers by this authorNicola Pugno
Department of Structural Engineering Politecnico di Torino, Torino (Italy)
Search for more papers by this authorRonald N. Miles
Department of Mechanical Engineering State University of New York at Binghamton Binghamton, 13902 NY (USA)
Search for more papers by this authorAbstract
An in situ electron microscopy study is presented of adhesion interactions between single-walled carbon nanotubes (SWNTs) by mechanically peeling thin free-standing SWNT bundles using in situ nanomanipulation techniques inside a high-resolution scanning electron microscope. The in situ measurements clearly reveal the process of delaminating one SWNT bundle from its originally bound SWNT bundle in a controlled-displacement manner and capture the deformation curvature of the delaminated SWNT bundle during the peeling process. A theoretical model based on nonlinear elastica theory is employed to interpret the measured deformation curvatures of the SWNTs and to quantitatively evaluate the peeling force and the adhesion strength between bundled SWNTs. The estimated adhesion energy per unit length for each pair of neighboring tubes in the peeling interface based on our peeling experiments agrees reasonably well with the theoretical value. This in situ peeling technique provides a potential new method for separating bundled SWNTs without compromising their material properties. The combined peeling experiments and modeling presented in this paper will be very useful to the study of the adhesion interactions between SWNTs and their nonlinear mechanical behaviors in the large-displacement regime.
Supporting Information
Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors.
Filename | Description |
---|---|
smll_200901807_sm_supplfigs.pdf304 KB | supplfigs |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
M. S. Dresselhaus,
G. Dresselaus,
P. Avouris,
Carbon Nanotubes,
Springer,
Berlin
2001.
10.1007/3-540-39947-X_2 Google Scholar
- 2 J. Y. Huang, S. Chen, Z. Q. Wang, K. Kempa, Y. M. Wang, S. H. Jo, G. Chen, M. S. Dresselhaus, Z. F. Ren, Nature 2006, 439, 281.
- 3
D. Qian,
G. J. Wagner,
W. K. Liu,
M. F. Yu,
R. S. Ruoff,
Appl. Mech. Rev.
2002,
55,
495.
10.1115/1.1490129 Google Scholar
- 4 B. Liu, H. Jiang, H. T. Johnson, Y. Huang, J. Mech. Phys. Solids 2004, 52, 1.
- 5 T. Lin, V. Bajpai, T. Ji, L. M. Dai, Aust. J. Chem. 2003, 56, 635.
- 6 H. Jiang, B. Liu, Y. Huang, K. C. Hwang, J. Eng. Mater. Technol. 2004, 126, 265.
- 7 J. Hone, M. C. Llaguno, M. J. Biercuk, A. T. Johnson, B. Batlogg, Z. Benes, J. E. Fischer, Appl. Phys. A 2002, 74, 339.
- 8 D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chem. Rev. 2006, 106, 1105.
- 9 H. G. Craighead, Science 2000, 290, 1532.
- 10 B. Mahar, C. Laslau, R. Yip, Y. Sun, IEEE Sensors J. 2007, 7, 266.
- 11 J. N. Coleman, U. Khan, Y. K. Gun'ko, Adv. Mater. 2006, 18, 689.
- 12 T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L. Cheung, C. M. Lieber, Science 2000, 289, 94.
- 13 J. Cumings, A. Zettl, Science 2000, 289, 602.
- 14 S. Akita, Y. Nakayama, S. Mizooka, Y. Takano, T. Okawa, Y. Miyatake, S. Yamanaka, M. Tsuji, T. Nosaka, Appl. Phys. Lett. 2001, 79, 1691.
- 15 P. Kim, C. M. Lieber, Science 1999, 286, 2148.
- 16 M. J. Buehler, Y. Kong, H. Gao, Y. Huang, J. Eng. Mater. Technol. 2006, 128, 3.
- 17 Z. L. Li, P. Dharap, S. Nagarajaiah, R. P. Nordgren, B. Yakobson, Int. J. Sol. Struct. 2004, 41, 6925.
- 18 T. Tang, A. Jagota, C. Y. Hui, J. Appl. Phys. 2005, 97, 074304.
- 19 W. Zhou, Y. Huang, B. Liu, J. Wu, K. C. Hwang, B. Q. Wei, Nano 2007, 2, 175.
- 20 W. Zhou, Y. Huang, B. Liu, K. C. Hwang, J. M. Zuo, M. J. Buehler, H. Gao, Appl. Phys. Lett. 2007, 90, 073107.
- 21 M. J. Buehler, J. Mater. Res. 2006, 21, 2855.
- 22 B. Bhushan, X. Ling, A. Jungen, C. Hierold, Phys. Rev. B 2008, 77, 165428.
- 23 M. C. Strus, L. Zalamea, A. Raman, R. B. Pipes, C. V. Nguyen, E. A. Stach, Nano Lett. 2008, 8, 544.
- 24 B. Chen, M. Gao, J. M. Zuo, S. Qu, B. Liu, Y. Huang, Appl. Phys. Lett. 2003, 83, 3570.
- 25 K. Kendall, Molecular Adhesion and its Applications, Kluwe Academic/Plenum Publishers, New York 2001.
- 26 B. Bhushan, Philos. Trans. R. Soc. A 2008, 366, 1499.
- 27 Y. Zhu, C. Ke, H. D. Espinosa, Exp. Mech. 2007, 47, 7.
- 28 W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, G. Wang, Science 1996, 274, 1701.
- 29 C. H. Ke, H. D. Espinosa, Small 2006, 2, 1484.
- 30 C. H. Ke, N. Pugno, B. Peng, H. D. Espinosa, J. Mech. Phys. Solids 2005, 53, 1314.
- 31 M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, Science 2000, 287, 637.
- 32This statement is supported by the fact that the measured total projected length of the delaminated SWNT bundle from the HRSEM images, which includes the segment attached to the other fixed–fixed SWNT bundle, is almost unchanged during the whole peeling experiment.
- 33 R. M. Tromp, A. Afzali, M. Freitag, D. B. Mitzi, Z. Chen, Nano Lett. 2008, 8, 469.
- 34 M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. Mclean, S. R. Lustig, R. E. Richardson, N. G. Tassi, Nat. Mater. 2003, 2, 338.
- 35 Y. Mikata, Acta Mech. 2007, 190, 133.
- 36 M. R. Falvo, G. J. Clary, R. M. Taylor, V. Chi, F. P. Brooks, S. Washburn, R. Superfine, Nature 1997, 389, 582.
- 37 O. A. Goussev, P. Richner, U. W. Suter, J. Adhes. 1999, 69, 1.
- 38 L. D. Landau, E. M. Lifshitz, Theory of Elasticity, Pergamon Press, Oxford 1986.
- 39 D. W. Nicholson, Int. J. Fract. 1977, 13, 279.
- 40 K. Kendall, J. Adhes. 1973, 5, 105.
- 41 J. Peng, J. Wu, K. C. Hwang, J. Song, Y. Huang, J. Mech. Phys. Solids 2008, 56, 2213.
- 42 J. Wu, K. C. Hwang, Y. Huang, J. Mech. Phys. Solids 2008, 56, 279.
- 43 Y. Huang, J. Wu, K. C. Hwang, Phys. Rev. B 2006, 74, 245413.
- 44 M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson, Nature 1996, 381, 678.
- 45
R. Saito,
G. Dresselhaus,
M. S. Dresselhaus,
Physical Properties of Carbon Nanotubes,
Imperial College Press,
London
1998.
10.1142/p080 Google Scholar
- 46 J. P. Lu, Phys. Rev. Lett. 1997, 79, 1297.
- 47 L. A. Girifalco, M. Hodak, R. S. Lee, Phys. Rev. B 2000, 62, 13104.
- 48 A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, C. H. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley, Science 1996, 273, 483.
- 49 J. E. Lennard-Jones, Proc. R. Soc. London Ser. A 1930, 129, 598.