Nanoparticle Formation in Giant Vesicles: Synthesis in Biomimetic Compartments†
Peng Yang
Department of Theory and Bio-Systems Max Planck Institute of Colloids and Interfaces Science Park Golm, 14424 Potsdam (Germany)
Current address: Department of Biomedical Engineering Duke University Durham, NC 27705, USA
Search for more papers by this authorReinhard Lipowsky
Department of Theory and Bio-Systems Max Planck Institute of Colloids and Interfaces Science Park Golm, 14424 Potsdam (Germany)
Search for more papers by this authorCorresponding Author
Rumiana Dimova
Department of Theory and Bio-Systems Max Planck Institute of Colloids and Interfaces Science Park Golm, 14424 Potsdam (Germany)
Department of Theory and Bio-Systems Max Planck Institute of Colloids and Interfaces Science Park Golm, 14424 Potsdam (Germany).Search for more papers by this authorPeng Yang
Department of Theory and Bio-Systems Max Planck Institute of Colloids and Interfaces Science Park Golm, 14424 Potsdam (Germany)
Current address: Department of Biomedical Engineering Duke University Durham, NC 27705, USA
Search for more papers by this authorReinhard Lipowsky
Department of Theory and Bio-Systems Max Planck Institute of Colloids and Interfaces Science Park Golm, 14424 Potsdam (Germany)
Search for more papers by this authorCorresponding Author
Rumiana Dimova
Department of Theory and Bio-Systems Max Planck Institute of Colloids and Interfaces Science Park Golm, 14424 Potsdam (Germany)
Department of Theory and Bio-Systems Max Planck Institute of Colloids and Interfaces Science Park Golm, 14424 Potsdam (Germany).Search for more papers by this authorWe would like to thank R. Knorr for his help with the confocal microscope. We acknowledge him and K. Tauer for critically reading the text.
Graphical Abstract
Nanoparticles of CdS with radii of 4 or 50 nm are formed in a controlled fashion inside lipid giant vesicles. For this purpose, two protocols are developed: electrofusion of differently loaded vesicles and slow vesicle content exchange via lipid nanotubes (see image). The process of particle formation can be directly monitored with fluorescence microscopy. The approach can be used to form any kind of nanoparticle.
Supporting Information
Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors.
Filename | Description |
---|---|
smll_200900560_sm_suppdata.pdf426.7 KB | suppdata |
smll_200900560_sm_video1.avi2.4 MB | video1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 a) D. Bhattacharya, R. K. Gupta, Crit. Rev. Biotechnol. 2005, 25, 199; b) D. Mandal, M. E. Bolander, D. Mukhopadhyay, G. Sarkar, P. Mukherjee, Appl. Microbiol. Biotechnol. 2006, 69, 485; c) C. Sanchez, H. Arribart, M. Madeleine, G. Guille, Nat. Mater. 2005, 4, 277; d) R. Y. Sweeney, C. B. Mao, X. X. Gao, J. L. Burt, A. M. Belcher, G. Georgiou, B. L. Iverson, Chem. Biol. 2004, 11, 1553.
- 2 a) P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S. R. Sainkar, M. I. Khan, R. Ramani, R. Parischa, P. V. Ajayakumar, M. Alam, M. Sastry, R. Kumar, Angew. Chem. 2001, 113, 3697; Angew. Chem. Int. Ed. 2001, 40, 3585; b) A. Ahmad, P. Mukherjee, D. Mandal, S. Senapati, M. I. Khan, R. Kumar, M. Sastry, J. Am. Chem. Soc. 2002, 124, 12108; c) C. T. Dameron, R. N. Reese, R. K. Mehra, A. R. Kortan, P. J. Carroll, M. L. Steigerwald, L. E. Brus, D. R. Winge, Nature 1989, 338, 596; d) M. Umetsu, M. Mizuta, K. Tsumoto, S. Ohara, S. Takami, H. Watanabe, I. Kumagai, T. Adschiri, Adv. Mater. 2005, 17, 2571.
- 3
N. Kröger,
M. B. Dickerson,
G. Ahmad,
Y. Cai,
M. S. Haluska,
K. H. Sandhage,
N. Poulsen,
V. C. Sheppard,
Angew. Chem.
2006,
118,
7397;
Angew. Chem. Int. Ed.
2006,
45,
7239.
10.1002/ange.200601871 Google Scholar
- 4 R. R. Naik, S. J. Stringer, G. Agarwal, S. E. Jones, M. O. Stone, Nat. Mater. 2002, 1, 169.
- 5 R. Dimova, S. Aranda, N. Bezlyepkina, V. Nikolov, K. A. Riske, R. Lipowsky, J. Phys.: Condens. Matter 2006, 18, S1151.
- 6 a) S. Mann, J. P. Hannington, R. J. P. Williams, Nature 1986, 324, 565; b) S. Bhandarkar, A. Bose, J. Colloid Interface Sci. 1990, 139, 541.
- 7 a) M. I. Khramov, V. N. Parmon, J. Photochem. Photobiol. A 1993, 71, 279; b) B. A. Korgel, H. G. Monbouquette, Langmuir 2000, 16, 3588.
- 8 K. A. Riske, R. Dimova, Biophys. J. 2005, 88, 1143.
- 9 a) D. T. Chiu, C. F. Wilson, F. Ryttsen, A. Stromberg, C. Farre, A. Karlsson, S. Nordholm, A. Gaggar, B. P. Modi, A. Moscho, R. A. Garza-Lopez, O. Orwar, R. N. Zare, Science 1999, 283, 1892; b) S. Kulin, R. Kishore, K. Helmerson, L. Locascio, Langmuir 2003, 19, 8206.
- 10 U. Zimmermann, Rev. Physiol. Biochem. Pharmacol. 1986, 105, 176.
- 11 H. Weller, Angew. Chem. 1993, 105, 43; Angew. Chem. Int. Ed. 1993, 32, 41.
- 12 J. A. Gratt, R. E. Cohen, J. Appl. Polym. Sci. 2003, 88, 177.
- 13 C. K. Haluska, K. A. Riske, V. Marchi-Artzner, J. M. Lehn, R. Lipowsky, R. Dimova, Proc. Natl. Acad. Sci. USA 2006, 103, 15841.
- 14 I. Shestopalov, J. D. Tice, R. F. Ismagilov, Lab Chip 2004, 4, 316.
- 15 R. Jahn, T. Lang, T. C. Südhof, Cell 2003, 112, 519.
- 16 A. Richard, V. Marchi-Artzner, M. N. Lalloz, M. J. Brienne, F. Artzner, T. Gulik-Krzywicki, M. A. Guedeau-Boudeville, J. M. Lehn, Proc. Natl. Acad. Sci. USA 2004, 101, 15279.
- 17 S. Gorer, J. A. Ganske, J. C. Hemminger, R. M. Penner, J. Am. Chem. Soc. 1998, 120, 9584.
- 18 Y. Li, R. Lipowsky, R. Dimova, J. Am. Chem. Soc. 2008, 130, 12252.
- 19
a)
R. A. Bockmann,
H. Grubmuller,
Angew. Chem.
2004,
116,
1039;
Angew. Chem. Int. Ed.
2004,
43,
1021;
10.1002/ange.200352784 Google Scholarb) C. Sinn, M. Antonietti, R. Dimova, Colloids Surf. A 2006, 283, 410.
- 20 G. Pabst, A. Hodzic, J. Strancar, S. Danner, M. Rappolt, P. Laggner, Biophys. J. 2007, 93, 2688.