The significance of morphometric analysis of Shimsha River, Karnataka, India to understand the hydrological and morphological characteristics
Corresponding Author
Pawan K. Gautam
Department of Geology, University of Lucknow, Lucknow, India
Correspondence Pawan K. Gautam, Department of Geology, University of Lucknow, Lucknow, India.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Pawan K. Gautam
Department of Geology, University of Lucknow, Lucknow, India
Correspondence Pawan K. Gautam, Department of Geology, University of Lucknow, Lucknow, India.
Email: [email protected]
Search for more papers by this authorAbstract
Morphometric analysis is crucial for advancing in various fields, including geomorphology, hydrology, environmental sciences, and geological studies. The objective of the present study is to understand the hydrological and morphological characteristics of the Shimsha River, which flows through the fluvial deltaic plain in the semiarid environment of Karnataka. Remote sensing and geographic information system have been used as mapping and efficient tools for drainage basin morphometry. The emphasis is laid on geological, geomorphological, hydrological, and fluvial features under linear, aerial, shape, relief, geometric, morphotectonic, and social morphometric parameters. The basin area is about 8741 km2, with a dendritic to subdendritic pattern. The sinuosity index is 1.6, which indicates meandering in nature. Areal parameters suggest that the drainage basin has a moderate surface permeability, homogenous lithology, run-off, erodibility, low relief conditions, infiltration rate, and a well-developed drainage network. Shape parameter indicates that the basin is subelongated with flatted peak flow and longer duration. Relief factor indicated low relief and intermediate stage of the incision rate. The river has an asymmetry factor is 38.65 and it shows that the channel has shifted southwest. The river shows a perfectly graded profile, with a considerable amount of incision and deposition along its profile showing tectonically unstable, based on the spatial distribution of the potential groundwater zone of about (5260 km2), other waterbody masks covered (285 km2). Standard visual interpretation techniques were applied to recognize and interpret the land use and land cover patterns. A basin rich in clay-rich soil may lead to a massive flood. Essentially, physiographical and structural conditions controlled the stream order of the basin. The increase in the stream length ratio from lower to a higher order. That indicates a mature geomorphic stage of the study area. Rainfall and local lithology impact the development of segments of the stream.
Open Research
DATA AVAILABILITY STATEMENT
Data will be made available on request.
REFERENCES
- Aparna, P., Nigee, K., Shimna, P., & Drissia, T. K. (2015). Quantitative analysis of geomorphology and flow pattern analysis of Muvattupuzha River Basin using geographic information system. Aquatic Procedia, 4, 609–616.
10.1016/j.aqpro.2015.02.079 Google Scholar
- Aswathy, M. V., Vijith, H., & Satheesh, R. (2008). Factors influencing the sinuosity of Pannagon River, Kottayam, Kerala, India: An assessment using remote sensing and GIS. Environmental Monitoring and Assessment, 138(1–3), 173–180.
- Bharath, A., Kumar, K. K., Maddamsetty, R., Manjunatha, M., Tangadagi, R. B., & Preethi, S. (2021). Drainage morphometry based sub-watershed prioritization of Kalinadi basin using geospatial technology. Environmental Challenges, 5, 100277.
10.1016/j.envc.2021.100277 Google Scholar
- Bharath, A., Maddamsetty, R., Manjunatha, M., & Reshma, T. V. (2023). Spatiotemporal rainfall variability and trend analysis of Shimsha River Basin, India. Environmental Science and Pollution Research, 30, 107084–107103. https://doi.org/10.1007/s11356-023-25720-3
- Bharath, A., Maddamsetty, R., & Uttam, P. (2023). Evaluation of the geomorphological scenario of Shimsha basin, Karnataka, India. Water Science & Technology, 87(8), 1907–1924.
- Biswas, S., Sudhakar, S., & Desai, V. R. (1999). Prioritisation of subwatersheds based on morphometric analysis of drainage basin a remote sensing and GIS approach. Journal of the Indian Society of Remote Sensing, 27, 155–166.
10.1007/BF02991569 Google Scholar
- Brice, J. C. (1964). Channel patterns and terraces of the loup rivers in Nebraska; physiographic and hydraulic studies of rivers (Geological Survey Professional Paper, 422-D). U.S. Government Publishing Office.
- Bull, W. B., & Mc, Fadden. L. D. (1977). Tectonic geomorphology north and south Garlock fault, California. In D. O. Doehring, Geomorphology in arid regions. Proceedings of the Eight Annual Geomorphology Symposium (pp. 115–138). State University of New York.
- Burrough, P. A. (1986). Principles of geographical information systems for land resources assessment (p. 193). Clarendon Press.
- Clarke, J. I. (1966). Morphometry from maps, essays in geomorphology (pp. 235–274). Elsevier Publication.
- Cox, R. T. (1994). Analysis of drainage-basin symmetry as a rapid technique to identify areas of possible quaternary tilt-block tectonics: An example from the Mississippi Embayment. Geological Society of America Bulletin, 106, 571–581.
- Cuong, N. Q., & Zuchiewicz, W. A. (2001). Morphotectonic properties of the Lo river fault near Tam Dao in North Vietnam. Natural Hazards and Earth System Sciences, 1, 15–22.
- Dehbozorgi, M., Pourkermani, M., Arian, M., Matkan, A. A., Motamedi, H., & Hosseiniasl, A. (2010). Quantitative analysis of relative tectonic activity in the Sarvestan area, central Zagros, Iran. Geomorphology, 121(3–4), 329–341.
- Dowling, T. I., Richarson, D. P., o'sullivan, A., Summerell, G. K., & Walker, J. (1998). Application of hypsometric integral and other terrain-based indicators of catchment health: A preliminary analysis (CSIRO Land and Water, Canberra, Technical Report 20/98). April 1998). CSIRO, p. 49.
- Gardiner, V. (2003). Drainage basin morphometry. In A. Goudie (Ed.), Geomorphological techniques ( 2nd ed., pp. 79–91). Routledge.
- Gautam, P. K., Kumar, D., Singh, A. K., & Singh, D. S. (2023). Drainage network analysis and tectonics interference of the Reth River, Central Ganga Plain (India) using geospatial technology. Geotectonics, 57(3), 330–345. https://doi.org/10.1134/S0016852123030032
- Gautam, P. K., & Singh, A. K. (2023). Evaluation of active tectonic features of Nandakini River Basin, Lesser Himalaya, India by using morphometric indices: A GIS approach. Advances in Environmental and Engineering Research, 4(1), 1–14. https://doi.org/10.21926/aeer.2301014
10.21926/aeer.2301014 Google Scholar
- Gautam, P. K., & Singh, D. S. (2022). Flood hazard and risk assessment of Deoha River Basin, Central Ganga Plain, India: An GIS approach. Disaster Advances, 15(10), 42–51. https://doi.org/10.25303/1510da042051
10.25303/1510da042051 Google Scholar
- Gautam, P. K., Singh, D. S., Kumar, D., & Singh, A. K. (2020). A GIS-based approach in drainage morphometric analysis of Sai River Basin, Uttar Pradesh, India. Journal of the Geological Society of India, 95, 366–376. https://doi.org/10.1007/s12594-020-1445-9
- Gautam, P. K., Singh, D. S., Kumar, D., Singh, A. K., & Vishawakarma, B. (2022). Assessment of morphometric characteristics and decadal fluctuation of groundwater level of Kali River basin and its link with climate change, West Indo-Gangetic plain, India using geographical information system. Disaster Advances, 15(5), 26–38. https://doi.org/10.25303/1505da026038
10.25303/1505da026038 Google Scholar
- Gautam, P. K., Singh, D. S., Singh, A. K., & Kumar, D. (2022). Geomorphic analysis of Baghain River, Yamuna Basin, and its implication for drainage characteristic and tectonics using remote sensing and GIS techniques. Journal of the Geological Society of India, 98, 1573–1584. https://doi.org/10.1007/s12594-022-2214-8
- Gregory, K. J., & Walling, D. E. (1973). In E. Arnold (Ed.), Drainage basin form and processes: A geomorphological approach (p. 456). Halsted Press (Pub.).
- Geological Survey of India (GSI). (1981). Geological and mineralogical map of Karnataka and Goa.
- Hack, J. T. (1957). Studies of longitudinal stream profiles in Virginia and Maryland (United States Geological Survey Professional Paper 294-B). USGS, pp. 45–79.
- Hadley, R. F., & Schumm, S. A. (1961). Sediment sources and drainage basin characteristics in upper Cheyenne River Basin (US Geological Survey Water-Supply Paper 1531-B). USGS, p. 198.
- Hammond, E. H. (1964). Analysis of properties in land form geography an application to broadscale land form mapping. Annals of the Association of American Geographers, 54(1), 11–19.
- Hare, P. H., & Gardner, T. W. (1985). Geomorphic indicators of vertical neotectonism along converging plate margins, Nicoya Peninsula, Costa Rica. In M. Morisawa & J. T. Hack (Eds.), Tectonic geomorphology (pp. 75–104). Allen and Unwin.
- Horton, R. E. (1932). Drainage basin characteristics. Eos, Transactions American Geophysical Union, 13, 350–361.
- Horton, R. E. (1945). Erosional development of streams and their drainage basins, hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, 56, 275–370.
- Howard, A. D. (1967). Drainage analysis in geologic interpretation: A summation. AAPG Bulletin, 51, 2246–2259.
- Javed, A., Khanday, M. Y., & Rais, S. (2011). Watershed prioritization using morphometric and land use/land cover parameters: A remote sensing and GIS based approach. Journal of the Geological Society of India, 78, 63–75.
- Johnson, D. (1933). Available relief and texture of topography, a discussion. The Journal of Geology, 41(3), 293–305.
10.1086/624038 Google Scholar
- Kadam, A. K., Kale, S. S., Umrikar, B. N., Sankhua, R. N., & Pawar, N. J. (2022). Assessing site suitability potential for soil and water conservation structures by using modified micro-watershed prioritization method: Geomorphometric and geomatic approach. Environment, Development and Sustainability, 24(4), 4659–4683.
- Keller, E. A. (2002). Active tectonics: earthquakes, uplift, and landscapes ( 2nd ed., p. 362). Prentice Hall.
- Keller, E. A., & Pinter, N. (1996). Active tectonics (p. 338). Prentice Hall.
- Krebs, N. (1922). Eine Karte der Reliefenergie Siiddeutschlands. Petermanns Mitteilungen, 68(3), 49–53 (in German).
- Krishnamurthy, J., & Srinivas, G. (1995). Role of geological and geomorphological factors in groundwater exploration: A study using IRS LISS data. International Journal of Remote Sensing, 16, 2595–2618.
- Kumar, D., Singh, D. S., Prajapati, S. K., Khan, I., Gautam, P. K., & Vishawakarma, B. (2018). Morphometric parameters and neotectonics of Kalyani River Basin, Ganga Plain: A remote sensing and GIS approach. Journal of the Geological Society of India, 91, 679–686. https://doi.org/10.1007/s12594-018-0923-9
- Leopold, L. B., & Wolman, M. G. (1957). River channel patterns braided, meandering, and straight (U.S. Geological Survey, 282-B, 85). United States Geological Survey.
- Leopold, L. B., Wolman, G. M., & Miller, J. P. (1964). Fluvial processes in geomorphology (pp. 453–468). W. H. Freeman.
- Magesh, N. S., & Chandrasekar, N. (2014). GIS model-based morphometric evaluation of Tamiraparani subbasin, Tirunelveli district, Tamil Nadu, India. Arabian Journal of Geosciences, 7, 131–141.
- Magesh, N. S., Chandrasekar, N., & Soundranayagam, J. P. (2011). Morphometric evaluation of Papanasam and Manimuthar watersheds, parts of Western Ghats, Tirunelveli district, Tamil Nadu, India: A GIS approach. Environmental Earth Sciences, 64(2), 373–381.
- Magesh, N. S., Jitheshlal, K. V., Chandrasekar, N., & Jini, K. V. (2013). Geographical information system-based morphometric analysis of Bharathapuzha river basin, Kerala, India. Applied Water Science, 3, 467–477.
10.1007/s13201-013-0095-0 Google Scholar
- Miller, V. C. (1953). A quantitative geomorphic study of drainage basin characteristic in the clinch, Mountain area, Verdinia and Tennesser (Project NR 389-042, Technical Report 3). Department of Geology, ONR, Geography Branch, Columbia University.
- Molin, P., Pazzaglia, F. J., & Dramis, F. (2004). Geomorphic expression of the active tectonics in a rapidly-deforming forearc, sila Massif, Calabria, Southern Italy. American Journal of Science, 304, 559–589.
- Mohan, K., Srivastava, V., & Singh, C. K. (2007). Pattern and genesis of lineaments in and across Son–Narmada lineament lineament zone in a part of Central India around Renukoot District Sonbhadra, U. P. Journal of Indian Society of Remote Sensing, 35(2), 181–187.
- Muller, J. E. (1968). An introduction to the hydraulic and topographic sinuosity indexes. Annals of the Association of American Geographers, 58(2), 371–385.
10.1111/j.1467-8306.1968.tb00650.x Google Scholar
- Nag, S. (1998). Morphometric analysis using remote sensing techniques in the Chaka sub-basin, Purulia district, West Bengal. Journal of the Indian Society of Remote Sensing, 26(12), 69–76.
10.1007/BF03007341 Google Scholar
- Nag, S. K., & Chakraborty, S. (2003). Influence of rock types and structures in the development of drainage network in hard rock area. Journal of the Indian Society of Remote Sensing, 31(1), 25–35.
10.1007/BF03030749 Google Scholar
- Nagarajan, N., & Poongothai, S. (2012). Spatial mapping of runoff from a watershed using SCS-CN method with remote sensing and GIS. Journal of Hydrologic Engineering, 17(11), 1268–1277.
- Nautiyal, M. D. (1964). Morphometric analysis of a drainage basin using aerial photographs, A case study of Khairkuli Basin, District Dehradun, U.P. Journal of the Indian Society of Remote Sensing, 22(4), 251–261.
10.1007/BF03026526 Google Scholar
- Nir, D. (1957). The ratio of relative and absolute altitude of Mt. Carmel. Geographical Review, 27, 564–569.
10.2307/211866 Google Scholar
- Nongkynrih, J. M., & Husain, Z. (2011). Morphometric analysis of the Manas river basin using earth observation data and geographical information system. International Journal of Geomatics and Geosciences, 2, 2.
- Obeidat, M., Awawdeh, M., & Al-Hantouli, F. (2021). Morphometric analysis and prioritisation of watersheds for flood risk management in Wadi Easal Basin (WEB), Jordan, using geospatial technologies. Journal of Flood Risk Management, 14(2):e12711. https://doi.org/10.1111/jfr3.12711
- Odiji, C. A., Aderoju, O. M., Eta, J. B., Shehu, I., Mai-Bukar, A., & Onuoha, H. (2021). Morphometric analysis and prioritization of upper Benue River watershed, Northern Nigeria. Applied Water Science, 11, 41. https://doi.org/10.1007/s13201-021-01364-x
- Pareta, K., & Pareta, U. (2011). Quantitative morphometric analysis of a river of Yamuna Basin, India using ASTER (DEM) data and GIS. International Journal of Geomatics and Geosciences, 2(1), 248–269.
- Partsch, J. (1911). Schlesien eine Landeskunde fur das deutsche Volk, v. II (p. 690). Ferdinand Hirt.
- Patel, D., Gajjar, C., & Srivastava, P. K. (2013). Prioritisation of Malesari mini rivers through morphometric analysis: A remote sensing and GIS perspective. Environmental Earth Sciences, 69, 2643–2656.
- Pérez-Peña, J. V., Azor, A., Azañón, J. M., & Keller, E. A. (2010). Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): Insights from geomorphic indexes and drainage pattern analysis. Geomorphology, 119(1–2), 74–87.
- Pinter, N. (2005). Applications of tectonic geomorphology for deciphering active deformation in the Pannonian Basin, Hungary. In L. Fodor & K. Brezsnyánszky (Eds.), Proceedings of the Workshop on “Applications of GPS in Plate Tectonics in Research on Fossil Energy Resources and in Earthquake Hazard Assessment,” occasional papers of the Geological Institute of Hungary (Vol. 204, pp. 25–51). Magyar Állami Földtani Intézet.
- Prasad, S., Saluja, R., Joshi, V., & Garg, J. K. (2021). Riverine landscape dynamics of the upper ganga river (Haridwar-Narora), India. Environmental Monitoring and Assessment, 193(2), 96.
- Rai, P. K., Mohan, K., Mishra, S., Ahmad, A., & Mishra, V. N. (2017). A GIS-based approach in drainage morphometric analysis of Kanhar River Basin, India. Applied Water Science, 7, 217–232.
- Raize, E., & Henry, J. (1937). An average slope map of new England. Geographical Review, 24, 467–472.
- Raj, R. (2012). Active tectonics of NE Gujarat (India) by morphometric and morphostructural studies of Vatrak river basin. Journal of Asian Earth Sciences, 50, 66–78.
- Rajasekhar, M., Raju, G. S., & Raju, R. S. (2020). Morphometric analysis of the Jilledubanderu River Basin, Anantapur District, Andhra Pradesh, India, using geospatial technologies. Groundwater for Sustainable Development, 11, 100434.
10.1016/j.gsd.2020.100434 Google Scholar
- Reddy, G. P. O., Maji, A. K., & Gajbhiye, K. S. (2004). Drainage morphometry and its influence on landform characteristics in a basaltic terrain, Central India—A remote sensing and GIS approach. International Journal of Applied Earth Observation and Geoinformation, 6, 1–16.
10.1016/j.jag.2004.06.003 Google Scholar
- Rekha, B. V., George, V. A., & Rita, M. (2011). Morphometric analysis and micro- watershed prioritization of Peruvanthanam sub-watershed, the Manimala River Basin, Kerala, South India. Environmental Research, Engineering and Management, 3(57), 6–14.
- Russell, R. J. (1949). Geographical geomorphology. Annals of the Association of American Geographers, 39(1), 1–11.
10.1080/00045604909351992 Google Scholar
- Sarkar, D., Mondal, P., Sutradhar, S., & Sarkar, P. (2020). Morphometric analysis using SRTM-DEM and GIS of Nagar River Basin, Indo-Bangladesh Barind Tract. Journal of the Indian Society of Remote Sensing, 48, 597–614. https://doi.org/10.1007/s12524-020-01106-7
- Sarmin, F. J., & Zaman, U. S. (2018). Miscellaneous techniques of detecting Groundwater. IJIRCST, 6(5), 110–112.
10.21276/ijircst.2018.6.5.4 Google Scholar
- Schrepfer, H., & Kallner, H. (1930). Die maximale Reliefenergie Westdeutschlands. Petermanns Mitteilungen, 76(15), 225–227. (in German)
- Schumm, S. A. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society of America bulletin, 67(5), 597–646.
- Schumm, S. A. (1986). Alluvial river response to active tectonics. In R. E. Wallace (Ed.), Active tectonics studies in geophysics (pp. 80–94). National Academic Press.
- Schwab, G. O., Frevert, R. K., Edminster, T. W., & Barnes, K. K. (1981). Soil and water conservation engineering. John Wiley Inc.
- Shreve, R. L. (1966). Statistical law of stream numbers. The Journal of Geology, 74, 17–37.
- Singh, D. S., & Awasthi, A. (2011a). Implication of drainage basin parameters of Chhoti Gandak River, Ganga Plain, India. Journal of the Geological Society of India, 78(2), 370–378.
10.1007/s12594-011-0102-8 Google Scholar
- Singh, D. S., & Awasthi, A. (2011b). Natural hazards in the Ghaghara River Area, Ganga Plain, India. Natural Hazard, 57, 213–225.
- Singh, D. S., Prajapati, S. K., Singh, P., Singh, K., & Kumar, D. (2015). Climatically induced levee break and flood risk management of the Gorakhpur region, Rapti River Basin, Ganga Plain, India. Journal of the Geological Society of India, 85, 79–86.
- Singh, C. K., & Srivastava, V. (2011). Morphotectonics of the area around Renukoot, district Sonbhadra, U.P. using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing, 39(2), 235–240.
- Singh, D. S., Tiwari, A. K., & Gautam, P. K. (2018). The Burhi Gandak: Most sinuous river. In D. Singh (Ed.), The Indian rivers (Vol. 2, pp. 209–219). Springer Hydrogeology. https://doi.org/10.1007/978-981-10-2984-4_17
10.1007/978-981-10-2984-4_17 Google Scholar
- Smith, G. H. (1935). The relative relief of Ohio. The Geographical Review, 25, 272–274.
10.2307/209602 Google Scholar
- Smith, K. G. (1950). Standards for grading texture of erosional topography. American Journal of Science, 248, 655–668.
- Sreedevi, P. D., Subrahmanyam, K., & Ahmed, S. (2005). The significance of morphometric analysis for obtaining groundwater potential zones in a structurally controlled terrain. Environmental Geology, 47(3), 412–420.
10.1007/s00254-004-1166-1 Google Scholar
- Srivastava, V. K. (1997). Study of drainage pattern of Jharia Coalfield (Bihar), India, through remote sensing technology. Journal of the Indian Society of Remote Sensing, 25(1), 41–46.
10.1007/BF02995417 Google Scholar
- Strahler, A. N. (1952). Dynamic basis of geomorphology. Geological Society of America Bulletin, 63(9), 923–938.
- Strahler, A. N. (1956). Quantitative slope analysis. Bulletin of the Geological Society of America, 67, 571–596.
- Strahler, A. N. (1964). Quantitative geomorphology of drainage basins and channel networks. In V. Te Chow (Ed.), Handbook of applied hydrology (pp. 4–76). McGraw Hill Book Company.
- Suresh, R. (2000). Soil and water conservation engineering, 3rd edn. Vol. 24. Watershed concept and management, 785–813.
- Tejpal, R. (2013). Relief analysis of the Tangri river in the lower Shivalik and Piedmont zone of Haryana and Punjab. Indian Journal of spatial science, 4(1), 9–20.
- Thakur, B. R. (2005). Relief analysis of Solani river using remote sensing and GIS technology. USGS Water-Supply, 4, 26–36.
- Vijith, H., & Satheesh, R. (2006). GIS based morphometric analysis of two major upland sub-watersheds of Meenachil River in Kerala. Journal of the Indian Society of Remote Sensing, 34, 181–185.
- Waikar, M. L., & Nilawar, A. P. (2014). Morphometric analysis of a drainage basin using geographical information system: A case study. International Journal of Multidisciplinary and Current Research, 2, 179–184.
- Wentworth. (1930). Morphometry is the measurement of geometry, Germany.
- Winter, T. C., Harvey, J. W., Franke, O. L., & Alley, W. M. (1998). Ground water and surface water—A single resource. U.S. Geological Survey.
10.3133/cir1139 Google Scholar
- Withanage, N. S., Dayawansa, N. D. K., & De Silva, R. P. (2015). Morphometric analysis of the Gal Oya River basin using spatial data derived from GIS. Tropical Agricultural Research, 26(1), 175–188.
10.4038/tar.v26i1.8082 Google Scholar
- Woolderink, H. (2021). The effects of faulting on river morphodynamics and morphology (Meuse and Roer valley, Netherlands).
- Young, A. (1971). Slope profile analysis-The system of best units. Slope Form and Process, Institute of BritishGeographers Special Publication, 3, 1–13.