Volume 31, Issue 18 pp. 8813-8829
SPECIAL ISSUE ARTICLE

Online learning constrained model predictive control based on double prediction

J. M. Manzano

Corresponding Author

J. M. Manzano

Departamento de Ingniería de Sistemas y Automática, Universidad de Sevilla, Sevilla, Spain

Correspondence J. M. Manzano, Departamento de Ingniería de Sistemas y Automática, Universidad de Sevilla, Camino de los Descubrimientos s/n 41092, Sevilla, Spain.

Email: [email protected]

Search for more papers by this author
D. Muñoz de la Peña

D. Muñoz de la Peña

Departamento de Ingniería de Sistemas y Automática, Universidad de Sevilla, Sevilla, Spain

Search for more papers by this author
J. Calliess

J. Calliess

Oxford-Man Institute of Quantitative Finance, University of Oxford, Oxford, UK

Search for more papers by this author
D. Limon

D. Limon

Departamento de Ingniería de Sistemas y Automática, Universidad de Sevilla, Sevilla, Spain

Search for more papers by this author
First published: 07 September 2020
Citations: 3
[Correction added on 22 September 2020, after first online publication: ‘model predictive controller’ has been changed to ‘model predictive control’ in the article title.]

Funding information: Ministerio de Economía y Competitividad, DPI2016-76493-C3-1-R; Universidad de Sevilla, VI-PPITUS

Summary

A data-based predictive controller is proposed, offering both robust stability guarantees and online learning capabilities. To merge these two properties in a single controller, a double-prediction approach is taken. On the one hand, a safe prediction is computed using Lipschitz interpolation on the basis of an offline identification dataset, which guarantees safety of the controlled system. On the other hand, the controller also benefits from the use of a second online learning-based prediction as measurements incrementally become available over time. Sufficient conditions for robust stability and constraint satisfaction are given. Illustrations of the approach are provided in a simulated case study.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.