Rejection of mismatched disturbances for systems with input delay via a predictive extended state observer
Corresponding Author
R. Sanz
Instituto de Automática e Informática Industrial, Universitat Politècnica de València, València, Spain
Correspondence
Ricardo Sanz, Instituto de Automática e Informática Industrial, Universitat Politècnica de València, 46022 València, Spain.
Email: [email protected]
Search for more papers by this authorP. Garcia
Instituto de Automática e Informática Industrial, Universitat Politècnica de València, València, Spain
Search for more papers by this authorE. Fridman
School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
Search for more papers by this authorP. Albertos
Instituto de Automática e Informática Industrial, Universitat Politècnica de València, València, Spain
Search for more papers by this authorCorresponding Author
R. Sanz
Instituto de Automática e Informática Industrial, Universitat Politècnica de València, València, Spain
Correspondence
Ricardo Sanz, Instituto de Automática e Informática Industrial, Universitat Politècnica de València, 46022 València, Spain.
Email: [email protected]
Search for more papers by this authorP. Garcia
Instituto de Automática e Informática Industrial, Universitat Politècnica de València, València, Spain
Search for more papers by this authorE. Fridman
School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
Search for more papers by this authorP. Albertos
Instituto de Automática e Informática Industrial, Universitat Politècnica de València, València, Spain
Search for more papers by this authorSummary
The problem of output stabilization and disturbance rejection for input-delayed systems is tackled in this work. First, a suitable transformation is introduced to translate mismatched disturbances into an equivalent input disturbance. Then, an extended state observer is combined with a predictive observer structure to obtain a future estimation of both the state and the disturbance. A disturbance model is assumed to be known but attenuation of unmodeled components is also considered. The stabilization is proved via Lyapunov-Krasovskii functionals, leading to sufficient conditions in terms of linear matrix inequalities for the closed-loop analysis and parameter tuning. The proposed strategy is illustrated through a numerical example.
REFERENCES
- 1Sipahi R, Niculescu SI, Abdallah CT, Michiels W, Gu K. Stability and stabilization of systems with time delay. IEEE Control Syst. 2011; 31(1): 38-65.
- 2Fridman E. Introduction to Time-Delay Systems: Analysis Control.Basel, Switzerland: Springer; 2014.
10.1007/978-3-319-09393-2 Google Scholar
- 3Smith O. Closer Control of loops with dead time. Chem Eng Prog. 1957; 53: 217-219.
- 4Watanabe K, Ito M. A process-model control for linear systems with delay. IEEE Trans Autom control. 1981; 26(6): 1261-1269.
- 5Astrom KJ, Hang CC, Lim BC. A new Smith predictor for controlling a process with an integrator and long dead-time. IEEE Trans Autom Control. 1994; 39(2): 343-345.
- 6Matausek M, Micic A. A modified Smith predictor for controlling a process with an integrator and long dead-time. IEEE Trans Autom Control. 1996; 41(8): 1199-1203.
- 7García P, Albertos P. A new dead-time compensator to control stable and integrating processes with long dead-time. Automatica. 2008; 44(4): 1062-1071.
- 8Normey-Rico JE, Camacho EF. Unified approach for robust dead-time compensator design. J Process Control. 2009; 19(1): 38-47.
- 9Manitius A, Olbrot AW. Finite spectrum assignment problem for systems with delays. IEEE Trans Autom Control. 1979; 24(4): 541-552.
- 10Artstein Z. Linear systems with delayed controls: a reduction. IEEE Trans Autom Control. 1982; 27(4): 869-879.
- 11Krstic M. Lyapunov tools for predictor feedbacks for delay systems: inverse optimality and robustness to delay mismatch. Automatica. 2008; 44(11): 2930-2935.
- 12Léchappé V, Moulay E, Plestan F, Glumineau A, Chriette A. New predictive scheme for the control of LTI systems with input delay and unknown disturbances. Automatica. 2015; 52: 179-184.
- 13Sanz R, Garcia P, Albertos P. Enhanced disturbance rejection for a predictor-based control of LTI systems with input delay. Automatica. 2016; 72: 205-208.
- 14Basturk HI, Krstic M. Adaptive sinusoidal disturbance cancellation for unknown LTI systems despite input delay. Automatica. 2015; 58: 131-138.
- 15Basturk HI. Cancellation of unmatched biased sinusoidal disturbances for unknown LTI systems in the presence of state delay. Automatica. 2017; 76: 169-176.
- 16Sanz R, Garcia P, Albertos P, Zhong Q-C. Robust controller design for input-delayed systems using predictive feedback and an uncertainty estimator. Int J Robust Nonlinear Control. 2017; 27: 1826-1840.
- 17Mondié S, Michiels W. Finite spectrum assignment of unstable time-delay systems with a safe implementation. IEEE Trans Autom Control. 2003; 48(12): 2207-2212.
- 18Zhong QC. On distributed delay in linear control laws-Part I: discrete-delay implementations. IEEE Trans Autom Control. 2004; 49(11): 2074-2080.
- 19Zhou B, Lin Z, Duan G-R. Truncated predictor feedback for linear systems with long time-varying input delays. Automatica. 2012; 48(10): 2387-2399.
- 20Zhou B, Li ZY, Lin Z. On higher-order truncated predictor feedback for linear systems with input delay. Int J Robust Nonlinear Control. 2014; 24(17): 2609-2627.
- 21Besançon G, Georges D, Benayache Z. Asymptotic state prediction for continuous-time systems with delayed input and application to control. Paper presented at: 2007 European Control Conference (ECC). IEEE; 2007; Kos, Greece.
- 22Najafi M, Hosseinnia S, Sheikholeslam F, Karimadini M. Closed-loop control of dead time systems via sequential sub-predictors. Int J Control. 2013; 86(4): 599-609.
- 23Léchappé V, Moulay E, Plestan F. Dynamic observation-prediction for LTI systems with a time-varying delay in the input. Paper presented at: 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE; 2016; Las Vegas, NV.
- 24Cacace F, Conte F, Germani A, Pepe P. Stabilization of strict-feedback nonlinear systems with input delay using closed-loop predictors. Int J Robust Nonlinear Control. 2016; 26: 3524-3540.
- 25Mazenc F, Malisoff M. Stabilization of nonlinear time-varying systems through a new prediction based approach. IEEE Trans Autom Control. 2017; 62: 2908-2915.
- 26Guo L, Chen W-H. Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. Int J Robust Nonlinear Control. 2005; 15(3): 109-125.
- 27Antsaklis P, Michel AN. Linear Systems. Berlin, Germany: Springer Science and Business Media; 2006.
- 28Fridman E. Output regulation of nonlinear systems with delay. Syst Control Lett. 2003; 50(2): 81-93.
- 29Isidori A, Byrnes CI. Output regulation of nonlinear systems. IEEE Trans Autom Control. 1990; 35(2): 131-140.
- 30Ding Z. Global stabilization and disturbance suppression of a class of nonlinear systems with uncertain internal model. Automatica. 2003; 39(3): 471-479.
- 31Isidori A. Nonlinear Control Systems. Berlin, Germany: Springer Science and Business Media; 2013.
- 32Chen WH, Yang J, Guo L, Li S. Disturbance-observer-based control and related methods: an overview. IEEE Trans Ind Electron. 2016; 63(2): 1083-1095.
- 33Fridman E, Shaked U. An improved stabilization method for linear time-delay systems. IEEE Trans Autom Control. 2002; 47(11): 1931-1937.
- 34Fridman E, Orlov Y. Exponential stability of linear distributed parameter systems with time-varying delays. Automatica. 2009; 45(1): 194-201.