Unitary group approach to spin-adapted open-shell coupled cluster theory
Bogumił Jeziorski
Department of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland
Search for more papers by this authorJosef Paldus
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
Search for more papers by this authorPiotr Jankowski
Institute of Physics, Pedagogical University, 42-200 Czestochowa, Poland
Search for more papers by this authorBogumił Jeziorski
Department of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland
Search for more papers by this authorJosef Paldus
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
Search for more papers by this authorPiotr Jankowski
Institute of Physics, Pedagogical University, 42-200 Czestochowa, Poland
Search for more papers by this authorAbstract
We show that the irreducible tensor operators of the unitary group provide a natural operator basis for the exponential Ansatz which preserves the spin symmetry of the reference state, requires a minimal number of independent cluster amplitudes for each substitution order, and guarantees the invariance of the correlation energy under unitary transformations of core, open-shell, and virtual orbitals. When acting on the closed-shell reference state with nc doubly occupied and nv unoccupied (virtual) orbitals, the irreducible tensor operators of the group U(nc) ⊗ U(nV) generate all Gelfand-Tsetlin (GT) states corresponding to appropriate irreducible representation of U(nc + nv). The tensor operators generating the M-tuply excited states are easily constructed by symmetrizing products of M unitary group generators with the Wigner operators of the symmetric group SM. This provides an alternative to the Nagel-Moshinsky construction of the GT basis. Since the corresponding cluster amplitudes, which are also U(nc) ⊗ U(ns) tensors, can be shown to be connected, the irreducible tensor operators of U(nc) ⊗ U(nv) represent a convenient basis for a spin-adapted full coupled cluster calculation for closed-shell systems. For a high-spin reference determinant with n, singly occupied open-shell orbitals, the corresponding representation of U(n), n=nc + nv + ns is not simply reducible under the group U(nc) ⊗ U(ns) ⊗ U(nv). The multiplicity problem is resolved using the group chain U(n) ⊃ U(nc + nv) ⊗ U(ns) ⊃ U(nc) ⊗U(ns)⊗ U(nv) ⊗ U(nv). The labeling of the resulting configuration-state functions (which, in general, are not GT states when nc > 1) by the irreducible representations of the intermediate group U(nc + nv) ⊗U(ns) turns out to be equivalent to the classification based on the order of interaction with the reference state. The irreducible tensor operators defined by the above chain and corresponding to single, double, and triple substitutions from the first-, second-, and third-order interacting spaces are explicitly constructed from the U(n) generators. The connectedness of the corresponding cluster amplitudes and, consequently, the size extensivity of the resulting spin-adapted open-shell coupled cluster theory are proved using group theoretical arguments. The perturbation expansion of the resulting coupled cluster equations leads to an explicitly connected form of the spin-restricted open-shell many-body perturbation theory. Approximation schemes leading to manageable computational procedures are proposed and their relation to perturbation theory is discussed. © 1995 John Wiley & Sons, Inc.
References
- 1 F. Coester, Nucl. Phys. 7, 421 (1958); F. Coester and H. Kiimmel, Nucl. Phys. 17, 477 (1960).
- 2 J. Čižek, J. Chem. Phys. 45, 4256 (1966); J. Čižek, Adv. Chem. Phys. 14, 35 (1969); J. Čižek and J. Paldus, Int. J. Quantum Chem. 5, 359 (1971); J. Paldus, J. Čižek, and I. Shavitt, Phys. Rev. A 5, 50 (1972).
- 3
J. Paldus, in
Methods in Computational Molecular Physics,
NATO ASI Series, Series B: Physics,
Vol. 293,
S. Wilson and
G. H. F. Diercksen, Eds.
(Plenum, New York,
1992),
p. 99;
J. Paldus, in
Relativistic and Electron Correlation Effects in Molecules and Solids,
NATO ASI Series, Series B: Physics,
Vol. 318,
G. L. Malli, Ed.
(Plenum, New York,
1994),
p. 207.
10.1007/978-1-4899-1340-1_9 Google Scholar
- 4 K. Jankowski, in Methods in Computational Chemistry, Vol. 1: Electron Correlation in Atoms and Molecules, S. Wilson, Ed. (Plenum, New York, 1987), p. 1.
- 5 S. Salomonson and P. Öster, Phys. Rev. A 41, 4670 (1990).
- 6 B. Jeziorski, H. J. Monkhorst, K. Szalewicz, and J. G. Zabolitzky, J. Chem. Phys. 81, 368 (1984); S. A. Alexander, H. J. Monkhorst, and K. Szalewicz, J. Chem. Phys. 89, 355 (1988).
- 7 J. Noga, W. Kutzelnigg, and W. Klopper, Chem. Phys. Lett. 199, 497 (1992).
- 8 R. J. Bartlett, Annu. Rev. Phys. Chem. 32, 359 (1981); R. J. Bartlett, J. Phys. Chem. 93, 1697 (1989).
- 9
M. Urban,
I. Černušák,
V. Kellö, and
J. Noga, in
Methods in Computational Chemistry, Vol. 1: Electron Correlation in Atoms and Molecules,
S. Wilson, Ed.
(Plenum Press, New York,
1987),
p. 117.
10.1007/978-1-4899-1983-0_2 Google Scholar
- 10 G. E. Scuseria and H. F. Schaefer III, Chem. Phys. Lett. 146, 23 (1988); Chem. Phys. Lett. 152, 382 (1988); G. E. Scuseria and T. J. Lee, J. Chem. Phys. 92, 5851 (1990).
- 11 S. A. Kucharski and R. J. Bartlett, Theor. Chim. Acta 80, 387 (1991).
- 12 F. Coester, in Lectures in Theoretical Physics, Vol. 11B, K. T. Mahanthappa and W. E. Brittin, Eds. (Gordon and Breach, New York, 1969), p. 157.
- 13 R. Offerman, W. Ey, and H. Kilmmel, Nucl. Phys. A273, 349 (1976); R. Offerman, Nucl. Phys. A273, 368 (1976); W. Ey, Nucl. Phys. A296, 189 (1978).
- 14 D. Mukherjee, R. K. Moitra, and A. Mukhopadhyay, Mol. Phys., 33, 955 (1977); A. Haque and D. Mukherjee, J. Chem. Phys. 80, 5058 (1984); D. Mukherjee and S. Pal, Adv. Quantum Chem. 20, 292 (1989).
- 15 J. Paldus, J. Čížek, M. Saute, and A. Laforgue, Phys. Rev. A17, 805 (1978); M. Saute, J. Paldus, and J. Cizek, Int. J. Quantum Chem. 15, 463 (1979).
- 16
I. Lindgren,
Int. J. Quantum Chem. Symp.
12,
33
(1978);
I. Lindgren and
J. Morrison,
Atomic Many-Body Theory
(Springer, Berlin,
1982).
10.1007/978-3-642-96614-9 Google Scholar
- 17 B. Jeziorski and H. J. Monkhorst, Phys. Rev. A 24, 1668 (1981).
- 18
J. Paldus, in
New Horizons of Quantum Chemistry,
P.-O. Löwdin and
B. Pullman, Eds.
(Reidel, Dordrecht, Holland,
1983),
p. 31.
10.1007/978-94-009-7950-5_5 Google Scholar
- 19 A. Banerjee and J. Simons, Int. J. Quantum Chem. 19, 207 (1981); Int. J. Quantum Chem., J. Chem. Phys. 76, 4548 (1982); U. Baker and M. A. Robb, Mol. Phys. 50, 20 (1983); R. Tanaka and H. Terashima, Chem. Phys. Lett. 106, 558 (1984); M. R. Hoffman and J. Simons, J. Chem. Phys. 88, 993 (1988); N. Oliphant and L. Adamowicz, J. Chem. Phys. 94, 1229 (1991); J. Chem. Phys. 95, 6645 (1991); P. Piecuch, N. Oliphant, and L. Adamowicz, J. Chem. Phys. 99, 1875 (1993); P. Piecuch and L. Adamowicz, J. Chem. Phys. 100, 5792 (1994); P. Piecuch and L. Adamowicz, Chem. Phys. Lett. 221, 121 (1994).
- 20 L. Z. Stolarczyk and H. J. Monkhorst, Phys. Rev. A 32, 725, 743 (1985); Phys. Rev. A 37, 1908, Phys. Rev. A 37, 1926 (1988); M. Barysz, H. J. Monkhorst, and L. Z. Stolarczyk, Theor. Chim. Acta 80, 483 (1991).
- 21 B. Jeziorski and J. Paldus, J. Chem. Phys. 90, 2714 (1989).
- 22 K. Jankowski, J. Paldus, and J. Wasilewski, J. Chem. Phys. 95, 3549 (1991); K. Jankowski, J. Paldus, I. Grabowski, and K. Kowalski, J. Chem. Phys. 97, 7600 (1992).
- 23 W. D. Laidig and R. J. Bartlett, Chem. Phys. Lett. 104, 424 (1984); W. D. Laidig, P. Saxe, and R. J. Bartlett, J. Chem. Phys. 86, 887 (1987).
- 24 B. Jeziorski and J. Paldus, J. Chem. Phys. 88, 5673 (1988).
- 25 L. Meissner, K. Jankowski, and J. Wasilewski, Int. J. Quantum Chem. 34, 535 (1988); L. Meissner, S. A. Kucharski, and R. J. Bartlett, J. Chem. Phys. 91, 6187 (1989).
- 26 J. Paldus, L. Pylypow, and B. Jeziorski, in Many-Body Methods in Quantum Chemistry, U. Kaldor, Ed., Lecture Notes in Chemistry, Vol. 52 (Springer-Verlag, Berlin, 1989), p. 151.
- 27 A. Balková, S. A. Kucharski, and R. J. Bartlett, Chem. Phys. Lett. 182, 511 (1991); A. Balková, S. A. Kucharski, L. Meissner, and R. J. Bartlett, Theor. Chim. Acta 80, 335 (1991); Theor. Chim. Acta, J. Chem. Phys. 95, 4311 (1991); A. Balková and R. J. Bartlett, Chem. Phys. Lett. 193, 364 (1992).
- 28 P. Piecuch, J. Paldus, L. Pylypow, and B. Jeziorski, Phys. Rev. A 47, 2738 (1993); P. Piecuch and J. Paldus, Phys. Rev. A 49, 3479 (1994).
- 29 U. Kaldor, Theor. Chim. Acta 80, 427 (1991).
- 30 K. Jankowski and P. Malinowski, J. Phys. B 27, 829 (1994); J. Phys. B, 27, 1287 (1994); K. Jankowski, J. Paldus, I. Grabowski, and K. Kowalski, J. Chem. Phys. 101, 3085 (1994).
- 31 X. Li, P. Piecuch, and J. Paldus, Chem. Phys. Lett. 224, 267 (1994); P. Piecuch, X. Li, and J. Paldus, Chem. Phys. Lett. 230, 377 (1994).
- 32 M. Rittby and R. J. Bartlett, J. Chem. Phys. 92, 3033 (1988).
- 33 G. E. Scuseria, Chem. Phys. Lett. 176, 27 (1991).
- 34 C. L. Janssen and H. F. Schaefer III, Theor. Chim. Acta 79, 1 (1991).
- 35 D. Jayatilaka and T. J. Lee, Chem. Phys. Lett. 199, 211 (1992); D. Jayatilaka and T. J. Lee, J. Chem. Phys. 98, 9734 (1993).
- 36 P. J. Knowles, C. Hampel, and H.-J. Werner, J. Chem. Phys. 99, 5219 (1993).
- 37 P. Neogrády, M. Urban, and I. Hubač, J. Chem. Phys. 97, 5074 (1992).
- 38 P. Neogrady, M. Urban, and I. Hubač, J. Chem. Phys. 100, 3703 (1994).
- 39 C. C. J. Roothaan, Rev. Mod. Phys. 32, 179 (1960).
- 40 J. Paldus, J. Chem. Phys. 67, 303 (1977); B. G. Adams and J. Paldus, Phys. Rev. A 20, 1 (1979).
- 41 J. Paldus and B. Jeziorski, Theor. Chim. Acta 73, 81 (1988).
- 42 F. A. Matsen, Int. J. Quantum Chem. 32, 71 (1987).
- 43 F. A. Matsen, Int. J. Quantum Chem. 32, 87 (1987).
- 44
J. Paldus and
X. Li, in
Symmetries in Science, VI. From the Rotation Group to Quantum Algebras,
B. Gruber, Ed.
(Plenum, New York,
1993),
p. 573;
X. Li and
J. Paldus,
Int. J. Quantum Chem.
S27,
269
(1993).
10.1002/qua.560480829 Google Scholar
- 45 X. Li and J. Paldus, J. Chem. Phys. 101, 8812 (1994); X. Li and J. Paldus, Chem. Phys. Lett. 231, 1 (1994).
- 46 I. Hubač and P. Čárský, Phys. Rev. A 22, 2392 (1979); P. Čárský and I. Hubač, Theor. Chim. Acta 80, 407 (1991).
- 47 C. Murray and E. R. Davidson, Chem. Phys. Lett. 187, 451 (1991).
- 48 J. Paldus, J. Chem. Phys. 61, 5321 (1974); J. Paldus, in Theoretical Chemistry: Advances and Perspectives, H. Eyring and D. Henderson, Eds. (Academic Press, New York, 1976), Vol. 2, p. 131.
- 49 F. A. Matsen and R. Pauncz, The Unitary Group in Quantum Chemistry (Elsevier, Amsterdam, 1986).
- 50 J. Paldus and J. Čížek, Adv. Quantum Chem. 9, 105 (1975).
- 51 W. Kutzelnigg, J. Chem. Phys. 77, 3081 (1982).
- 52 I. Shavitt, Int. J. Quantum Chem. Symp. 11, 131 (1977).
- 53
J. Paldus, in
Mathematical Frontiers in Computational Chemical Physics,
D. G. Truhlar, Ed.
(Springer-Verlag, Berlin,
1988),
p. 262;
10.1007/978-1-4684-6363-7_10 Google ScholarI. Shavitt, in Mathematical Frontiers in Computational Chemical Physics, D. G. Truhlar, Ed. (Springer-Verlag, Berlin, 1988), p. 300.10.1007/978-1-4684-6363-7_11 Google Scholar
- 54 J. Paldus, in Contemporary Mathematics, Vol. 160, P. Olver and N. Kamran, Eds. (American Mathematical Society, Providence, RI, 1994), p. 209.
- 55 I. M. Gelfand and M. L. Tsetlin, Dokl. Akad. Nauk SSSR 71, 825 (1950).
- 56 J. Nagel and M. Moshinsky, J. Math. Phys. 6, 682 (1965).
- 57 G. I. Baird and L. C. Biedenharn, J. Math. Phys. 5, 1730 (1964).
- 58 L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Physics, Theory and Application (Addison Wesley, Reading, MA, 1981); L. C. Biedenharn and J. D. Louck, The Racah-Wigner Algebra in Quantum Theory (Addison-Wesley, Reading, MA, 1981).
- 59 X. Li and J. Paldus, J. Math. Chem. 13, 273, 325 (1993).
- 60 P. E. S. Wormer and A. van der Avoird, J. Chem. Phys. 57, 2498 (1972).
- 61 P. E. S. Wormer and A. van der Avoird, Int. J. Quantum Chem. 8, 715 (1974).
- 62 J. Paldus and M. J. Boyle, Phys. Rev. A 22, 2299 (1980).
- 63
I. G. Kaplan,
Symmetry of Many-Electron Systems
(Academic Press, New York,
1975).
10.1063/1.2998922 Google Scholar
- 64 J. Flores and M. Moshinsky, Nucl. Phys. A 93, 81 (1967).
- 65 E. P. Wigner, Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra (Academic Press, New York, 1959), p. 118.
- 66 P.-O. Liöwdin, Rev. Mod. Phys. 39, 259 (1967); P.-O. Löwdin and O. Goscinski, Int. J. Quantum Chem. S3, 533 (1970).
- 67 I. G. Kaplan, J. Mol. Struct. 272, 187 (1992).
- 68 I. G. Kaplan, in Chemical Group Theory. Introduction and Fundamentals, D. Bonchev and D. H. Rouvray, Eds. (Gordon and Breach, Langhorne, PA, 1994), p. 209.
- 69 P. E. S. Wormer, PhD Dissertation (University of Nijmegen, 1975).
- 70 W. Kutzelnigg, J. Chem. Phys. 82, 4166 (1985).
- 71 J. Planelles and J. Karwowski, Theor. Chim. Acta 82, 239 (1992).
- 72 J. Planelles, C. Valdemoro, and J. Karwowski, Phys. Rev. A 41, 2391 (1990).
- 73 H. J. Monkhorst, B. Jeziorski, and F. E. Harris, Phys. Rev. A 23, 1639 (1981).
- 74 P. Jankowski and B. Jeziorski, Program for derivation and coding of algebraic equations involving second-quantized operators (University of Warsaw, 1992).
- 75 C. Bauschlicher, Jr. and H. Partridge, Theor. Chim. Acta 85, 255 (1993).
- 76 R. Manne, Mol. Phys. 24, 935 (1972).
- 77 B. Jeziorski and R. Moszynski, Int. J. Quantum Chem. 48, 161 (1993).
- 78 G. Arfken, Mathematical Methods for Physicists (Academic Press, New York, 1985), p. 327.