The effects of nonlocal gradient corrections in density functional calculations of hydrocarbon radical hyperfine structures
Leif A. Eriksson
Department of Physics, University of Stockholm, Box 6730, S-113 85 Stockholm, Sweden
Search for more papers by this authorVladimir G. Malkin
Département de Chimie et Centre d'Excellence sur la Dynamique Moléculaire et Interfaciale, Université de Montréal, Montréal, Québec H3C 3J7, Canada
Search for more papers by this authorOlga L. Malkina
Département de Chimie et Centre d'Excellence sur la Dynamique Moléculaire et Interfaciale, Université de Montréal, Montréal, Québec H3C 3J7, Canada
Search for more papers by this authorDennis R. Salahub
Département de Chimie et Centre d'Excellence sur la Dynamique Moléculaire et Interfaciale, Université de Montréal, Montréal, Québec H3C 3J7, Canada
Search for more papers by this authorLeif A. Eriksson
Department of Physics, University of Stockholm, Box 6730, S-113 85 Stockholm, Sweden
Search for more papers by this authorVladimir G. Malkin
Département de Chimie et Centre d'Excellence sur la Dynamique Moléculaire et Interfaciale, Université de Montréal, Montréal, Québec H3C 3J7, Canada
Search for more papers by this authorOlga L. Malkina
Département de Chimie et Centre d'Excellence sur la Dynamique Moléculaire et Interfaciale, Université de Montréal, Montréal, Québec H3C 3J7, Canada
Search for more papers by this authorDennis R. Salahub
Département de Chimie et Centre d'Excellence sur la Dynamique Moléculaire et Interfaciale, Université de Montréal, Montréal, Québec H3C 3J7, Canada
Search for more papers by this authorAbstract
Ground-state equilibrium geometries and hyperfine structures of a number of organic neutral and charged radical compounds are computed using the linear combination of Gaussian-type orbitals–density functional theory method. In addition to the local spin-density approximation, we also use two different nonlocal (gradient corrected) schemes for the calculations of the exchange and correlation potentials. The different functional forms are found to generate slightly different total and unpaired spin-density distributions in the molecules, and as a result, the computed isotropic hyperfine coupling constants vary markedly. The smallest variations are found for the hydrogens, where the results are generally in satisfactory agreement with experiment. For the carbon atoms, however, large differences in isotropic coupling constants are observed. The anisotropic hyperfine structures are generally very well described at all levels of theory. © John Wiley & Sons, Inc.
Bibliography
- 1 W. Meyer, J. Chem. Phys. 51, 5149 (1969).
- 2 A. Hilbert, Rep. Prog. Phys. 38, 1217 (1975).
- 3 J. Weber, in Current Aspects of Quantum Chemistry, 1981, R. Carbo, Ed. (Elsevier, Amsterdam, 1982), and references therein.
- 4 A. Lund, M. Lindgren, S. Lunell, and J. Maruani, in Molecules in Physics, Chemistry and Biology, J. Maruani, Ed. (Kluwer, Dordrecht, 1989), Vol. III.
- 5 D. Feller and E. R. Davidson, in Theoretical Models of Chemical Bonding, Part 3, Z. B. Maksić, Ed. (Springer-Verlag, Berlin, Heidelberg, 1991).
- 6(a) D. Feller and E. R. Davidson, J. Chem. Phys. 80, 1006 (1984); (b) J. Chem. Phys. 88, 7580 (1988); (c) D. Feller and E. R. Davidson, Theor. Chim. Acta 68, 57 (1985).
- 7(a) D. M. Chipman, Theor. Chim. Acta 82, 93 (1992); (b) D. M. Chipman, J. Chem. Phys. 78, 3112 (1983).
- 8 I. Carmichael, J. Phys. Chem. 93, 190 (1989); J. Phys. Chem., 94, 5734 (1990).
- 9 B. Engels, Chem. Phys. Lett. 179, 398 (1991); B. Engels and S. D. Peyerimhoff, Mol. Phys. 67, 583 (1989); S. P. Karna, F. Grein, B. Engels, and S. D. Peyerimhoff, Int. J. Quantum Chem. 36, 255 (1989); S. P. Karna, F. Grein, B. Engels, and S. D. Peyerimhoff, Mol. Phys. 69, 549 (1990).
- 10(a)
S. Lunell,
L. A. Eriksson, and
M.-B. Huang,
J. Mol. Struct. (Theochem)
230, 263
(1991);
10.1016/0166-1280(91)85184-9 Google Scholar(b) S. Lunell, L. A. Eriksson, and L. Worstbrock, J. Am. Chem. Soc. 113, 7508 (1991); (c) S. Lunell and M.-B. Huang, J. Chem. Soc. Chem. Commun. 1031 (1989); (d) M.-B. Huang and S. Lunell, Chem. Phys. 147, 85 (1990); (e) S. Lunell, L. A. Eriksson, T. Fängström, J. Maruani, L. Sjöqvist, and A Lund, Chem. Phys. 171, 119 (1993).
- 11(a) H. Sekino and R. J. Bartlett, J. Chem. Phys. 82, 4225 (1985); (b) D. M. Chipman, Theor. Chim. Acta 76, 73 (1989).
- 12 P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).
- 13 W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).
- 14 H. Katayama-Yoshida and A. Zunger, Phys. Rev. B 31, 8317 (1985).
- 15 H. M. Nagarathna, P. A. Montano, and V. M. Naik, J. Am. Chem. Soc. 105, 2938 (1983).
- 16 J. Weber, A. Goursot, E. Penigault, J. Ammeter, and J. Bachmann, J. Am. Chem. Soc. 104, 1491 (1982).
- 17 D. R. Salahub, Adv. Chem. Phys. 69, 447 (1987).
- 18
See, e.g.,
Density Functional Methods in Chemistry,
J. Labanowski and
J. Andzelm, Eds.
(Springer-Verlag, New York,
1991).
10.1007/978-1-4612-3136-3 Google Scholar
- 19 L. A. Eriksson, V. G. Malkin, O. L. Malkina, and D. R. Salahub, J. Chem. Phys. 99, 9756 (1993).
- 20 L. A. Eriksson, O. L. Malkina, V. G. Malkin, and D. R. Salahub, J. Chem. Phys., in press.
- 21
A. St-Amant and
D. R. Salahub,
Chem. Phys. Lett.
169, 387
(1990);
A. St-Amant,
PhD Thesis, Université de Montréal
(1991);
D. R. Salahub,
R. Fournier,
P. Mlynarski,
I. Papai,
A. St-Amant, and
J. Ushio, in
Density Functional Methods in Chemistry,
J. Labanowski and
J. Andzelm, Eds.
(Springer-Verlag, New York,
1991);
10.1007/978-1-4612-3136-3_6 Google ScholarC. Daul, A. Goursot, and D. R. Salahub, in Proceedings from the NATO ARW on Grid Methods in Atomic and Molecular Quantum Calculations, C. Leforestier, Ed. (in press).
- 22 S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).
- 23 J. P. Perdew, Phys. Rev. B 33, 8822 (1986); Phys. Rev. B 34, 7406 (1986).
- 24 A. D. Becke, Phys. Rev. A 38, 3098 (1988).
- 25 J. P. Perdew and Y. Wang, Phys. Rev. B. 33, 8800 (1986).
- 26 A. Goursot, in Proceedings of the 5'th International Conference on Density Functional Methods in Chemistry and Physics, Como, Italy, Sept. 13–16, 1993.
- 27 F. Sim, D. R. Salahub, S. Chin, and M. Dupuis, J. Chem. Phys. 95, 4317 (1991).
- 28 J. Kong, L. A. Eriksson, and R. J. Boyd, Chem. Phys. Lett. 217, 27 (1994).
- 29 S. Huzinaga, J. Chem. Phys. 42, 1293 (1965); S. Huzinaga and Y. Sakai, J. Chem. Phys. 50, 1371 (1969).
- 30 W. Kutzelnigg, U. Fleischer, and M. Schindler, in NMR—Basic Principles and Progress (Springer-Verlag Heidelberg, 1990), Vol. 23, p. 165.
- 31 V. G. Malkin, O. L. Malkina, and D. R. Salahub, Chem. Phys. Lett. 204, 80 (1993); Chem. Phys. Lett. 204, 87 (1993).
- 32 G. Herzberg, Proc. R. Soc. Lond. Ser. A 262, 291 (1961).
- 33 W. Weltner, Jr., Magnetic Atoms and Molecules (Van Nostrand, New York, 1983), and references therein.
- 34 R. E. Overill, J. Comp. Chem. 12, 231 (1991).
- 35 D. E. Wood and R. F. Sprecher, J. Am. Chem. Soc. 94, 6241 (1972); D. E. Wood and R. F. Sprecher, Mol. Phys. 26, 1311 (1973), and references therein.
- 36 A. Abu-Raqabah and M. C. R. Symons, Chem. Phys. Lett. 183, 171 (1991), and references therein.
- 37(a) H. J. McManus, R. W. Fessenden, and D. M. Chipman, J. Phys. Chem. 92, 3778 (1988); (b) H. O. Villar and M. Dupuis, Chem. Phys. Lett. 142, 59 (1987).
- 38 R. W. Fessenden and R. H. Schuler, J. Chem. Phys. 39, 2147 (1963).
- 39 T. Nanako, K. Morihashi, and O. Kikuchi, Bull. Chem. Soc. Jpn. 65, 603 (1992).
- 40 M. A. Austen, L. A. Eriksson, and R. J. Boyd, Can. J. Chem., in press.
- 41 V. Tschinke and T. Ziegler, Can. J. Chem. 67, 460 (1988); L. Fan and T. Ziegler, J. Chem. Phys. 94, 6057 (1991).
- 42 P. Mlynarski and D. R. Salahub, Phys. Rev. B 43, 1399 (1991).
- 43 I. Carmichael, J. Phys. Chem. 89, 4727 (1985).
- 44 E. Vajda, J. Tremmel, B. Rozsondai, I. Hargittai, A. K. Maltsev, N. D. Kagrammanov, and O. M. Nefedov, J. Am. Chem. Soc. 108, 4325 (1986).
- 45 L. A. Eriksson, S. Lunell, and R. J. Boyd, J. Am. Chem. Soc. 115, 6896 (1993).
- 46 L. B. Knight, Jr., J. Steadman, D. Feller, and E. R. Davidson, J. Am. Chem. Soc. 106, 3700 (1984).
- 47 S. Lunell, D. Feller, and E. R. Davidson, Theor. Chim. Acta 77, 111 (1990).
- 48 K. Toriyama, K. Nunome, and M. Iwasaki, J. Chem. Phys. 77, 5891 (1982).
- 49 S. Lunell and M.-B. Huang, Chem. Phys. Lett. 168, 63 (1990).
- 50 M. Shiotani and L. Sjöqvist, private communication.
- 51 M. Shiotani, Y. Nagata, and J. Sohma, J. Phys. Chem. 88, 4078 (1984).
- 52 H. Köppel, W. Domcke, L. S. Cederbaum, and W. v. Niessen, J. Chem. Phys. 69, 4252 (1978); A. J. Merer and L. Schoonveld, Can. J. Phys. 47, 1731 (1969).
- 53 S. Lunell, L. Yin, and M.-B. Huang, Chem. Phys. 139, 293 (1989).
- 54 S. Lunell, M.-B. Huang, and A. Lund, Faraday Discuss. Chem. Soc. 78, 35 (1984).
- 55 K. Ohta, H. Nakatsuji, H. Kubodera, and T. Shida, Chem. Phys. 76, 271 (1983).
- 56 M. Iwasaki, K. Toriyama, and K. Nunome, Faraday Discuss. Chem. Soc. 78, 19 (1984).
- 57 W. J. Bouma, D. Poppinger, and L. Radom, Isr. J. Chem. 23, 21 (1983).