Time scales and other problems in linking simulations of simple chemical systems to more complex ones
Enrico Clementi
Université Louis Pasteur, 3, rue de l'Université, 67084 Strasbourg Cedex, France
Search for more papers by this authorGiorgina Corongiu
Centro Ricerca Sviluppo, Studi Superiori Sardegna, P.O. Box 488, 09100 Cagliari, Italy
Search for more papers by this authorDario Estrin
Centro Ricerca Sviluppo, Studi Superiori Sardegna, P.O. Box 488, 09100 Cagliari, Italy
Search for more papers by this authorEduardo Hollauer
Centro Ricerca Sviluppo, Studi Superiori Sardegna, P.O. Box 488, 09100 Cagliari, Italy
On leave of absence from Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil.
Search for more papers by this authorOmar G. Stradella
Centro Ricerca Sviluppo, Studi Superiori Sardegna, P.O. Box 488, 09100 Cagliari, Italy
Search for more papers by this authorEnrico Clementi
Université Louis Pasteur, 3, rue de l'Université, 67084 Strasbourg Cedex, France
Search for more papers by this authorGiorgina Corongiu
Centro Ricerca Sviluppo, Studi Superiori Sardegna, P.O. Box 488, 09100 Cagliari, Italy
Search for more papers by this authorDario Estrin
Centro Ricerca Sviluppo, Studi Superiori Sardegna, P.O. Box 488, 09100 Cagliari, Italy
Search for more papers by this authorEduardo Hollauer
Centro Ricerca Sviluppo, Studi Superiori Sardegna, P.O. Box 488, 09100 Cagliari, Italy
On leave of absence from Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil.
Search for more papers by this authorOmar G. Stradella
Centro Ricerca Sviluppo, Studi Superiori Sardegna, P.O. Box 488, 09100 Cagliari, Italy
Search for more papers by this authorAbstract
We shall start with very small systems like H2 and H3, computed with very accurate methods (Hylleraas–CI) or atomic systems up to Zn with accurate methods (CI), then move to more complex ones, like C60, but now with somewhat less accurate methods, specifically Hartree–Fock with density functionals, the latter for the correlation energy but not for the exchange energy. For even more complex tasks like geometry optimization of C60, we have resorted to even simpler and parametrized methods, like local density functionals. Then, we could use quantum mechanics either to provide interaction potentials for classical molecular dynamics or to directly solve dynamical systems, in a quantum molecular dynamics approximation. Having demonstrated that we can use the computational output from small systems as input to larger ones, we discuss in detail a new model for liquid water, which is borne out entirely from ab initio methods and nicely links spectroscopic, thermodynamics, and other physicochemical data. Concerning time scales, we use classical molecular dynamics to determine friction coefficients, and with these we perform stochastic dynamic simulations. The use of simulation results from smaller systems to provide inputs for larger system simulations is the “global simulation” approach, which, today, with the easily available computers, is becoming more and more feasible. Projections on simulations in the 1996–1998 period are discussed, new computational areas are outlined, and a N4 complexity algorithm is compared to density functional approaches. © 1993 John Wiley & Sons, Inc.
Bibliography
- 1 M. H. Kalos, Phys. Rev. 128, 1791 (1962); D. M. Ceperley and B. J. Alder, Science 231, 555 (1986); J. Anderson, J. Chem. Phys. 85, 2839 (1987) and references therein.
- 2 E. Clementi, Ed., Modern Techniques in Computational Chemistry: MOTECC-90, (ESCOM, Leiden, 1990). See, e.g., the chapter by M. Parrinello, p. 731.
- 3
D. K. Bhattacharya and
E. Clementi,
Modern Techniques in Computational Chemistry: MOTECC-91,
E. Clementi, Ed.
(ESCOM, Leiden,
1991),
p. 939.
10.1007/978-94-011-3032-5_23 Google Scholar
- 4 A. M. De Callatay, Natural and Artificial Intelligence (North-Holland, Amsterdam, 1986).
- 5 E. A. Hylleraas, Z. Phys. 54, 347 (1929).
- 6 R. Bartlett, Annu. Rev. Phys. Chem. 32, 359 (1981); M. Urban, I. Cernusak, V. Kellö, and J. Noga, Methods in Computational Chemistry, S. Wilson, Ed. (Plenum, New York, 1987).
- 7(a) E. Clementi, Gazz. Chim. It. 91, 717 (1961). (b) G. Corongiu and E. Clementi, Int. J. Quantum Chem. 42, 1185 (1992).
- 8 R. S. Mulliken, Spectroscopy, Molecular Orbitals, and Chemical Bonding, Nobel Lecture, 1966.
- 9 H. M. James and A. S. Coolidge, J. Chem. Phys. 1, 825 (1933).
- 10 W. Kolos and L. Wolniewicz, J. Chem. Phys. 41, 3663 (1964); W. Kolos and L. Wolniewicz, J. Chem. Phys. 43, 2429 (1965); W. Kolos and L. Wolniewicz, Phys. Rev. Lett. 20, 243 (1968).
- 11 R. S. Mulliken and W. C. Ermler, Diatomic Molecules: Results of Ab Initio Calculations (Academic Press, New York, 1977).
- 12
H. A. Bethe and
E. E. Salpeter,
Quantum Mechanics of One- and Two-Electron Atoms
(Plenum, Rosetta, NY,
1977).
10.1007/978-1-4613-4104-8 Google Scholar
- 13 W. Kutzelnigg, Theor. Chim. Acta 68, 445 (1985).
- 14 A. Largo-Cabrerizo and E. Clementi, J. Comp. Chem. 8, 1191 (1987).
- 15 D. Frye, A. Preiskorn, G. C. Lie, and E. Clementi, in Modern Techniques in Computational Chemistry: MOTECC-90, E. Clementi, Ed. (ESCOM, Leiden, 1990). p. 535.
- 16 D. Frye, A. Preiskorn, and E. Clementi, J. Comp. Chem. 12, 560 (1991).
- 17 C. Urdaneta, A. Largo-Cabrerizo, J. Lievin, G. C. Lie, and E. Clementi, J. Chem. Phys. 88, 2091 (1988).
- 18 D. Frye, G. C. Lie, and E. Clementi, J. Chem. Phys. 91, 2366 (1989).
- 19 D. Frye, G. C. Lie, and E. Clementi, J. Chem. Phys. 91, 2369 (1989).
- 20 A. Preiskorn, G. C. Lie, D. Frye, and E. Clementi, J. Chem. Phys. 92, 4941 (1990).
- 21 A. Preiskorn, G. C. Lie, D. Frye, and E. Clementi, J. Chem. Phys. 92, 4948 (1990).
- 22 A. Preiskorn, D. Frye, and E. Clementi, J. Chem. Phys. 94, 7204 (1991).
- 23
D. Frye,
G. C. Lie, and
E. Clementi,
HCI Calculations on the Potential Energy Curve for the X1∑
State of H2; IBM Technical Report KGN 179 (IBM, Kingston, NY, 1989).
- 24 W. Kolos, K. Szalewicz, and H. Monkhorst, J. Chem. Phys. 84, 3259 (1986).
- 25 L. Salmon and R. Poshusta, J. Chem. Phys. 59, 3497 (1973).
- 26 F. Mentch and J. Anderson, J. Chem. Phys. 74, 6307 (1981).
- 27 A. Preiskorn and W. Woznicki, Mol. Phys. 52, 1291 (1984).
- 28 P. G. Burton, E. Von N.-Felsobuki, G. Doherty, and M. Hamilton, Mol. Phys. 55, 527 (1985).
- 29 W. Meyer, P. G. Burton, and P. Botschwina, J. Chem. Phys. 84, 891 (1986).
- 30 J. Anderson, J. Chem. Phys. 86, 2839 (1987).
- 31 C. A. Traynor and J. Anderson, Chem. Phys. Lett. 147, 389 (1988).
- 32 S. Huang, Z. Sun, and W. A. Lester, Jr. J. Chem. Phys. 92, 597 (1990).
- 33 S. A. Alexander, H. Monkhorst, R. Roeland, and K. Szalewicz, private communication.
- 34 B. Liu, J. Chem. Phys. 80, 581 (1984).
- 35
E. Davidson,
in Modern Techniques in Computational Chemistry: MOTECC-90,
E. Clementi, Ed.,
ESCOM, Leiden,
1990, p. 553.
10.1007/978-94-009-2219-8_10 Google Scholar
- 36
E. Clementi,
G. Corongiu, and
S. Chakravorty,
Modern Techniques in Computational Chemistry: MOTECC-90,
E. Clementi, Ed.
(ESCOM, Leiden,
1990),
p. 346.
10.1007/978-94-009-2219-8 Google Scholar
- 37
E. Clementi,
Int. J. Quantum Chem.
42, 527
(1992).
10.1002/qua.560420404 Google Scholar
- 38 A. Rizzo, E. Clementi, and M. Sekiya, Chem. Phys. Lett. 177, 477 (1991).
- 39 V. M. Umar, C. F. Fischer, E. R. Davidson, S. A. Hagstrom, and S. J. Chakravorty, Phys. Rev. A, 44, 7071 (1991).
- 40 F. Sasaki, Int. J. Quantum Chem. 8, 605 (1974).
- 41 F. Sasaki and M. Yoshimine, Phys. Rev. A 9, 17 (1974).
- 42 F. Sasaki and M. Yoshimine, Phys. Rev. A 9, 26 (1974).
- 43
F. Sasaki,
M. Sekiya,
T. Noro,
K. Ohtsuki, and
T. Osanai,
in Modern Techniques in Computational Chemistry: MOTECC-90,
E. Clementi, Ed.
(ESCOM, Leiden,
1990),
p. 181.
10.1007/978-94-009-2219-8_4 Google Scholar
- 44 M. Sekiya, T. Noro, K. Ohtsuki, F. Sasaki, A. Rizzo, and E. Clementi, Modern Techniques in Computational Chemistry; MOTECC-90, Input/Output Documentation (Special publication by the Department of Scientific/Engineering Computations, IBM Kingston, NY, 1990).
- 45 E. Clementi, J. Chem. Phys. 38, 2248 (1963).
- 46 E. Clementi and A. Veillard, J. Chem. Phys. 44, 3050 (1966).
- 47 C. L. Pekeris, Phys. Rev. 112, 1649 (1958); Phys. Rev. 115, 1216 (1959).
- 48 T. Kinoshita, Phys. Rev. 108, 1490 (1957).
- 49 A. Veillard and E. Clementi, J. Chem. Phys. 49, 2415 (1968).
- 50 D. Feller, C. M. Boyle, and E. Davidson, J. Chem. Phys. 86, 3424 (1987).
- 51 C. F. Bunge, Phys. Rev. A. 14, 1965 (1976).
- 52 H. Hartmann and E. Clementi, Phys. Rev. 133, 1295 (1964).
- 53 G. Murgia, G. Paddeu, L. Paglieri, A. Rizzo, and E. Clementi, in preparation.
- 54 J. Rys, PhD Thesis (University of New York at Buffalo, 1978).
- 55 E. Hollauer and M. Dupuis, Elimination of Undesired Functions in the Rys-King Algorithm to Obtain SALCAO (unpublished reports).
- 56 M. Dupuis and H. F. King, Int. J. Quantum Chem. 11, 613 (1977).
- 57 M. Dupuis and H. F. King, J. Chem. Phys. 68, 3998 (1978).
- 58 P. Lazzeretti, R. Zanasi, and E. Rossi, Chem. Phys. Lett. 75, 392 (1980).
- 59 D. Hoffmann and E. Hollauer, in progress.
- 60
J. Almlof and
P. R. Taylor,
in Advanced Theories and Computational Approaches to the Electronic Structure of Molecules,
C. E. Dykstra, Ed.
(Reidel, Dordrecht,
1984).
10.1007/978-94-009-6451-8_7 Google Scholar
- 61 K. S. Pitzer and E. Clementi, J. Am. Chem. Soc. 81, 4477 (1959).
- 62 J. R. Health, S. C. O'Brien, R. F. Curl, H. W. Kroto, and R. E. Smalley, Com. Cond. Matt. Phys. 13, 119 (1987).
- 63 H. P. Luthi and J. Almlof, Chem. Phys. Lett. 135, 357 (1987).
- 64 M. D. Newton and R. E. Stanton, J. Am. Chem. Soc. 108, 2569 (1986).
- 65 R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).
- 66 B. P. Feuston, E. Clementi, W. Andreoni, and M. Parrinello, Phys. Rev. B, 44, 4056 (1991).
- 67 G. B. Bachelet, D. R. Hamann, and M. Schulter, Phys. Rev. B 26, 4199 (1982).
- 68 J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
- 69 E. Brendals, B. N. Cyvin, J. Brunvoli, and S. J. Cyvin, Spectrosc. Lett. 21, 313 (1988).
- 70 K. Laasonen, F. Csajka, and M. Parrinello, Chem. Phys. Lett. 194, 172 (1992).
- 71(a) U. Niesar, G. Corongiu, M. -J. Huang, M. Dupuis, and E. Clementi, Int. J. Quantum Chem. Symp. 23, 421 (1989); (b) U. Niesar, G. Corongiu, M. -J. Huang, M. Dupuis, and E. Clementi, IBM Technical Report KGN-191 (IBM, Kingston, NY, 1989).
- 72 U. Niesar, G. Corongiu, E. Clementi, G. R. Kneller, and D. K. Bhattacharya, J. Phys. Chem. 94, 7949 (1990).
- 73 O. Matsuoka, E. Clementi, and M. Yoshimine, J. Chem. Phys. 64, 1351 (1976).
- 74 E. Clementi and G. Corongiu, Int. J. Quantum Chem. Symp. 10, 31 (1983).
- 75 J. H. Detrich, G. Corongiu, and E. Clementi, Chem. Phys. Lett. 112, 426 (1984).
- 76 M. Wojcik and E. Clementi, J. Chem. Phys. 84, 5970 (1986).
- 77 M. Wojcik and E. Clementi, J. Chem. Phys. 85, 3544 (1986).
- 78 M. Wojcik and E. Clementi, J. Chem. Phys. 85, 6085 (1986).
- 79 J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).
- 80 P. Obza and R. Zahradnik, Chem. Rev. 88, 871 (1988).
- 81 T. R. Dyke, K. M. Mack, and J. S. Muenter, J. Chem. Phys. 66, 498 (1977).
- 82 L. A. Curtiss, D. J. Frurip, and M. L. Blander, J. Chem. Phys. 64, 1120 (1982).
- 83 G. Corongiu, Int. J. Quantum Chem. 42, 1209 (1992).
- 84 G. Corongiu and E. Clementi, J. Chem. Phys. (in press).
- 85 G. Corongiu and E. Clementi, to be published.
- 86 F. Sciortino and G. Corongiu, to be published.
- 87 M. Mezei and D. L. Beveridge, J. Chem. Phys. 74, 662 (1981).
- 88 A. Raman and F. H. Stillinger, J. Am. Chem. Soc. 95, 7943 (1973).
- 89 F. Stillinger, Science 209, 451 (1980).
- 90 F. H. Stillinger and T. A. Weber, J. Phys. Chem. 87, 2833 (1983).
- 91 R. J. Speedy, J. D. Madura, and W. L. Jorgensen, J. Phys. Chem. 91, 909 (1987).
- 92 F. Sciortino and S. Fornili, J. Chem. Phys. 90, 2786 (1989).
- 93 P. Mausbach, J. Schnitker, and A. Geiger, J. Tech. Phys. 28, 67 (1987).
- 94 H. Kistenmacher, G. C. Lie, H. Popkie, and E. Clementi, J. Chem. Phys. 61, 546 (1974).
- 95 M. Aida, G. Corongiu, and E. Clementi, Int. J. Quantum Chem. 42, 1353 (1992).
- 96 R. Levy, R. Sheridan, J. W. Keepers, J. S. Dubey, S. Swaminathan, and M. Karplus, Biophys. J. 48, 509 (1985).
- 97 P. Procacci, G. Corongiu, and E. Clementi, IBM Technical Report KGN-195, 1989.
- 98 D. Bhattacharya, W. Xue, and E. Clementi, Int. J. Quantum Chem. 42, 1397 (1992).
- 99 D. L. Ermak and J. A. McCammon, J. Chem. Phys. 69, 1352 (1978).
- 100 S. Allison, R. Austin, and M. Hogan, J. Chem. Phys. 90, 3843 (1989).
- 101 K. Sharp, R. Fine, and B. Honig, Science, 236, 1460 (1987).
- 102 G. C. Ciccotti, E. Guardo, and G. Sese, Mol. Phys. 46, 875 (1982).
- 103 M. P. Allen, Mol. Phys. 47, 599 (1982).
- 104 W. F. van Gunsteren and H. J. C. Berendsen, Mol. Simul. 1, 173 (1988).
- 105 W. F. van Gunsteren and M. Karplus, Biochemistry 21, 2259 (1982).
- 106 J. Smith, S. Cusak, U. Pezzeca, B. Brooks, and M. Karplus, J. Chem. Phys. 88, 3636 (1986).
- 107 S. Cusak, J. Smith, B. Tibor, J. L. Finney, and M. Karplus, J. Mol. Biol. 202, 903 (1988).
- 108 S. Cusak, J. Smith, J. L. Finney, M. Karplus, and J. Treewhella, J. Phys. B 136, 256 (1986).
- 109 J. Smith, K. Kuczera, B. Tibor, W. Doster, C. Cusak, and M. Karplus, Physica B 156, 437 (1989).
- 110 M. Levitt and R. Sharon, Proc. Natl. Acad. Sci. U.S.A. 85, 7557 (1988).
- 111 J. Smith, K. Kuczera, P. Poole, and J. Finney, J. Biomol. Struct. Dyn. 4, 583 (1987).
- 112 S. Weiner, P. A. Kollman, D. A. Case, U. C. Singh, C. Ghio, G. Alagona, S. Profeta, Jr., and J. Pweiner, J. Am. Chem. Soc. 106, 765 (1984).
- 113 E. Clementi, Ed., Modern Techniques in Computational Chemistry, MOTECC-89 (ESCOM, Leiden, 1989), Chap. 1.
- 114 E. Clementi, Ed., Modern Techniques in Computational Chemistry, MOTECC-91 (ESCOM, Leiden, 1991), Chap. 1.
- 115 G. Bolis, M. Ragazzi, D. Salvaderi, D. R. Ferro, and E. Clementi, Int. J. Quantum Chem. 14, 815 (1978).
- 116 International Symposia on Neural Information Processing, Natural Language Understanding and AI, Advanced Computing for Life-Science, Fuzzy Systems, July 12–15, 1992, Kyushu Institute of Technology (Fujiki Printing Co., Iizuka, Fukuoka, Japan).
- 117 E. Clementi, Proc. Nat. Acad. Sci. U.S.A. 69, 2942 (1972).
- 118 G. C. Lie and E. Clementi, J. Chem. Phys. 69, 1275 (1974).
- 119 G. C. Lie and E. Clementi, J. Chem. Phys. 69, 1278 (1974).
- 120(a) E. Clementi, IBM J. Res. Dev. 9, 2 (1965). (b) E. Clementi, G. Corongiu, D. Bhattacharya, B. Feuston, D. Frye, A. Preiskorn, A. Rizzo, and W. Xue, Chem. Rev. 91, 679 (1991).
- 121 S. Chakravorty and E. Clementi, Phys. Rev. A 39, 2290 (1989).