Self-consistent Dirac–Slater calculations for molecules and embedded clusters
D. E. Ellis
Department of Chemistry, Northwestern University, Evanston, Illinois 60201, U.S.A. and Argonne National Laboratory, Argonne, Illinois 60439, U.S.A.
Search for more papers by this authorG. L. Goodman
COMMUNAISSANCE, Box 422, Downers Grove, Illinois 60515, U.S.A. and Argonne National Laboratory, Argonne, Illinois 60439, U.S.A.
Search for more papers by this authorD. E. Ellis
Department of Chemistry, Northwestern University, Evanston, Illinois 60201, U.S.A. and Argonne National Laboratory, Argonne, Illinois 60439, U.S.A.
Search for more papers by this authorG. L. Goodman
COMMUNAISSANCE, Box 422, Downers Grove, Illinois 60515, U.S.A. and Argonne National Laboratory, Argonne, Illinois 60439, U.S.A.
Search for more papers by this authorAbstract
The basis of self-consistent local density theory used in the fully relativistic Dirac–Slater model is briefly reviewed. Moment-polarized extensions of theory are developed to treat open-shell systems by lifting the pair-wise Kramers degeneracy. The discrete variational method is used to calculate one-electron energies and charge and magnetization densities of a series of rare-earth trihalides. The theoretical binding energies compare very well with recent gas-phase photoelectron spectra of Berkowitz et al. The von Barth–Hedin exchange and correlation potential produces energies which are significantly better, compared to simpler exchange-only models. Embedded molecular cluster studies on actinide compounds are reported, with particular emphasis on the AcO2 dioxides. Single-particle energy densities of states (DOS) and magnetization DOS are presented, along with an analysis of effective atomic configurations in the solid. Trends in these quantities with actinide atomic number are noted. In contrast to the semicore nature of rare-earth 4f electrons, the actinide 5f levels are seen to be active participants in bonding interactions.
Bibliography
- 1 H. A. Bethe and R. W. Jackson, Intermediate Quantum Mechanics, 2nd ed. (Benjamin, New York, 1968).
- 2 I. P. Grant, Adv. Phys. 19, 747 (1970).
- 3 The Dirac-Slater approach has been widely used in band theory; see, e.g., D. D. Koelling, Rep. Prog. Phys. 44, 139 (1981); In T. J. Quantum Chem. Quantum Chem. Symp. 8, 473 (1974).
- 4 J.-P. Desclaux and P. Pyykkö, Chem. Phys. Lett. 39, 300 (1976); P. Pyykkö and J.-P. Desclaux, Acc. Chem. Res. 12, 276 (1979).
- 5 Y. S. Lee and A. D. McLean, J. Chem. Phys. 76, 735 (1982).
- 6 J. C. Slater, The Self-Consistent Field for Molecules and Solids (McGraw-Hill, New York, 1974).
- 7 W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965); R. Gaspar, Acta Phys. Hungar. 3, 263 (1964).
- 8 Proceedings of Symposium on Local Density Approximations, Copenhagen (Pergamon, New York, 1983).
- 9 U. von Barth and L. Hedin, J. Phys. C 5, 1629 (1972); L. Hedin and B. I. Lundqvist, J. Phys. C 4, 2064 (1971).
- 10 A. Rosén and D. E. Ellis, J. Chem. Phys. 62, 3039 (1975); D. E. Ellis, A. Rosén, and P. F. Walch, Int. J. Quantum Chem. Quantum Chem. Symp. 9, 351 (1975); D. E. Ellis, J. Phys. B 10, 1 (1977).
- 11 A. Rosén, D. E. Ellis, H. Adachi, and F. W. Averill, J. Chem. Phys. 65, 3629 (1976).
- 12 A. Rosén, Int. J. Quantum Chem. 13, 509 (1978).
- 13 Y. Onodera and M. Okazaki, J. Phys. Soc. Jpn. 21, 2400 (1966).
- 14 D. E. Ellis and G. S. Painter, Phys. Rev. B 2, 2887 (1970).
- 15 B. Delley and D. E. Ellis, J. Chem. Phys. 76, 1949 (1982).
- 16 J. Oreg and G. Malli, J. Chem. Phys. 61, 4349 (1974); J. Chem. Phys. 65, 1746, 1755 (1976).
- 17 J. P. Desclaux and P. Pyykkö, Chem. Phys. Lett. 39, 300 (1976); H. T. Toivonen and P. Pyykkö, Int. J. Quantum Chem. 11, 695 (1977).
- 18 T. D. Bouman, A. F. L. Chung, and G. L. Goodman, in Sigma Molecular Orbital Theory, O. Sinanoglu and K. B. Wiberg, Eds. (Yale Univ. Press, New Haven, 1970), p. 333; T. D. Bouman and G. L. Goodman, J. Chem. Phys. 56, 2478 (1972); A. F. L. Chung and G. L. Goodman, J. Chem. Phys. 56, 4125 (1972); T. D. Bouman and G. L. Goodman, Quantum Chemistry Program Exchange, No. 214 GPTHEORY, Indiana University, Bloomington, Indiana 47401.
- 19 P. S. Bagus and U. I. Wahlgren, Comput. Chem. 1, 95 (1976).
- 20 J. D. Head, G. Blyholder, and F. Ruette, J. Comput. Phys. 45, 255 (1982).
- 21 A. S. Davydov, Quantum Mechanics (Pergamon, Oxford, 1965), p. 431.
- 22 A. J. Freeman and R. E. Watson, in Hyperfine Interactions, A. J. Freeman and R. B. Frankel, Eds. (Academic, New York, 1967), p. 55. Also see Ref. 6, pp. 21–26.
- 23 K. S. Krasnov, Molecular Structure of Inorganic Compounds (Khimia, Leningrad, 1979).
- 24 G. Herzberg, Electronic Spectra and Electronic Structure of Polyatomic Molecules (Van Nostrand, New York, 1966).
- 25 J. Berkowitz and B. M. Rüsic, private communication.
- 26 A. W. Potts and E. P. F. Lee, Chem. Phys. Lett. 82, 526 (1981); E. P. F. Lee, A. W. Potts, and J. E. Bloor, Proc. R. Soc. London Ser. A 381, 373 (1982).
- 27 R. S. Mulliken, J. Chem. Phys. 23, 1833, 1841 (1955).
- 28 C. E. Myers, L. J. Norman, and L. M. Loew, Inorg. Chem. 17, 1581 (1978).
- 29 The transition state (TS) scheme (see Ref. 6) allows reasonably accurate estimation of total energy differences, making use of eigenvalues of the TS single-particle Hamiltonian. In essence, occupation numbers fi of ground and excited configurations are averaged, and a Taylor series expansion of Etot in fi is exploited.
- 30 P. Pyykkö and L. L. Lohr, Jr., Inorg. Chem. 20, 1950 (1981).
- 31 C. F. Bender and E. R. Davidson, J. Inorg. Nucl. Chem. 42, 721 (1980).
- 32 D. E. Ellis, G. A. Benesh, and E. Byrom, Phys. Rev. B 16, 3038 (1977); Phys. Rev. B B 20, 1198 (1979).
- 33 V. I. Anisimov, V. A. Gubanov, D. E. Ellis, and E. Z. Kurmaev, J. Phys. F 11, 405 (1981).
- 34 B. Lindgren and D. E. Ellis, Phys. Rev. B 26, 636 (1982).
- 35 R. Podloucky, R. Zeller, and P. H. Dederichs, Phys. Rev. B 22, 5777 (1980); R. Zeller, and P. J. Braspenning, Solid State Commun. 42, 70 (1982).
- 36 J. Faber, Jr. and G. H. Lander, Phys. Rev. B 14, 1151 (1976).
- 37 B. W. Veal and D. J. Lam, Phys. Lett. A 49, 466 (1974); B. W. Veal, D. J. Lam, H. Diamond, and H. K. Hockstra, Phys. Rev. B 15, 2929 (1977); Y. Baer and J. Schoenes, Solid State Commun. 33, 885 (1980).
- 38 V. A. Gubanov, A. Rosén, and D. E. Ellis, J. Inorg. Nucl. Chem. 41, 975 (1979); J. Phys. Chem. Sol. 40, 17 (1979); D. E. Ellis, V. A. Gubanov, and A. Rosén, J. Phys. 40, C4–187 (1979).
- 39 P. J. Hay, W. R. Wadt, L. R. Kahn, and F. W. Bobrowicz, J. Chem. Phys. 69, 984 (1978); P. J. Hay, W. R. Wadt, L. R. Kahn, R. C. Rafenetti, and D. H. Phillips, J. Chem. Phys. 71, 1767 (1979); C. Y. Yang, K. H. Johnson, and J. A. Horsley, J. Chem. Phys. 68, 1001 (1978).
- 40 L. E. Cox, J. Electron Spectrosc. Relat. Phenom. 26, 167 (1982).
- 41 D. D. Koelling, D. E. Ellis, and R. J. Bartlett, J. Chem. Phys. 65, 3331 (1976); D. E. Ellis, A. Rosén, and V. A. Gubanov, J. Chem. Phys. 77, 4051 (1982); D. E. Ellis, in Actinides in Perspective, N. M. Edelstein, Ed. (Pergamon, New York, 1982), p. 123.
- 42 D. E. Ellis, unpublished.