A hybrid technique of orthonormality constrained orbital optimization in SCF calculations
Sankar PrasadBhattacharyya
Theory Group, Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Calcutta-700032, India
Search for more papers by this authorDebashis Mukherjee
Theory Group, Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Calcutta-700032, India
Search for more papers by this authorSankar PrasadBhattacharyya
Theory Group, Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Calcutta-700032, India
Search for more papers by this authorDebashis Mukherjee
Theory Group, Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Calcutta-700032, India
Search for more papers by this authorAbstract
A recently proposed orthonormality constrained orbital optimization technique is operationally modified further by coupling it to a gradient biased method, namely the steepest descent procedure of McWeeny. The hybrid technique developed in this way is shown to have better convergence properties in closed and unrestricted open-shell calculations. The technique can be adapted to MCSCF procedures as well. The important role played by "orbital symmetries" in the operation of the method is analysed. Similarities and differences of the present method with the orthogonal gradient method are pointed out. Possible avenues of circumventing convergence difficulty that one may encounter in pathological cases, particularly in ab initio calculations involving extended basis set, are suggested.
References
- 1 D. R.Hartree, Proc. Cambridge Philos. Soc. 24, 89 (1928).
- 2
V.Fock,
Z. Phys.
61, 126
(1930).
10.1007/BF01340294 Google Scholar
- 3
J. C.Slater,
Phys. Rev.
35, 210
(1930).
10.1103/PhysRev.35.210.2 Google Scholar
- 4 C. C. J.Roothaan, Rev. Mod. Phys. 23, 69 (1951).
- 5 G. G.Hall, Proc. R. Soc. London, Ser. A 205, 541 (1951).
- 6 R.Lefebvre, J. Chim. Phys. 54, 168 (1957); C. C. J.Roothaan, Rev. Mod. Phys. 32, 179 (1960); S.Huzinaga, Phys. Rev. 122, 131 (1961); F. W.Birss and S.Fraga, J. Chem. Phys. 40, 3203 (1964); J. Chem. Phys. 40, 3207 (1964); J. Chem. Phys. 40, 3212 (1964).
- 7(a)
D. R.Hartree,
W.Hartree, and
B.Swirles,
Philos. Trans. R. Soc. London, Ser. A
238, 229
(1939);
(b)
A. P.Jucys,
Adv. Chem. Phys.
14, 191
(1969);
(c)
G.Das and
A. C.Wahl,
J. Chem. Phys.
47, 2934
(1967);
(d)
A. C.Wahl and
G.Das,
Adv. quantum Chem.
5, 261
(1970);
(e)
T. L.Gilbert,
Phys. Rev. A
6, 580
(1972);
J. Chem. Phys.
60, 3835
(1974);
(f)
J.Hinze,
J. Chem. Phys.
59, 6424
(1973);
(g)
S.Huzinaga,
Prog. Theor. Phys.
41, 307
(1969);
J. Chem. Phys.
51, 3971
(1969);
(h)
K.Hirao and
H.Nakatsuji,
J. Chem. Phys.
59, 1457
(1973);
(i)
R.McWeeney,
Proc. R. Soc. London, Ser. A
232, 114
(1955);
Proc. R. Soc. London, Ser. A
241, 239
(1957);
(j)
W. H.Adams,
Phys. Rev.
156, 109
(1967);
Phys. Rev.
183, 31
(1969);
Phys. Rev.
183, 37
(1969);
(k)
J.Hinze and
C. C. J.Roothaan,
Prog. Theor. Phys.
10, 37
(1967);
10.1143/PTPS.40.37 Google Scholar(l) A.Golebiewski, Mol. Phys. 32, 1529 (1976); (m) P.Fantucci and S.Polezzo, Theor. Chim. Acta 45, 317 (1977); (n) V. A.Kuprievich and V. E.Klymenko, Int. J. Quantum Chem. 10, 941 (1976); (o) B.Levy and G.Berthier, Int. J. Quantum Chem. 2, 307 (1968);10.1002/qua.560020210 Google Scholar(p) T. C.Chang and F.Grein, J. Chem. Phys. 57, 5270 (1972).
- 8 A.Golebiewski, J.Hinze, and E.Yurtsever, J. Chem. Phys. 70, 1101 (1979).
- 9(a) D.Mukherjee, Proc. Indian Acad. Sci. A 87, 37 (1978); (b) S. S. Z.Adnan, S.Bhattacharyya, and D.Mukherjee, Int. J. Quantum Chem. 14, 289 (1978); (c) S. P.Bhattacharyya and D.Mukherjee, Chem. Phys. Lett. 66, 511 (1979); R.Meweeny and L. M.Newbould, Mol. Phys. 39, 353 (1980).
- 10 S.Polezzo and P.Fantucci, Mol. Phys. 36, 1835 (1978); Mol. Phys. 39, 1527 (1980); C.Garrod, Int. J. Quantum Chem. 13, 769 (1978); B. H.Lengsfield, J. Chem. Phys. 73, 382 (1980); P.Jorgensen and P.Daalgard, J. Chem. Phys. 69, 3833 (1978); E.Daalgard, Chem. Phys. Lett. 65, 559 (1979); P.Jorgensen and D.Yeager, J. Chem. Phys. 71, 757 (1979); C. C. J.Roothaan, J.Detrich, and D. G.Hopper, Int. J. Quantum Chem. Symp. 13, 93 (1979); H. J.Werner and W.Meyer, J. Chem. Phys. 73, 2342 (1980).
- 11
R.McWeeny,
Faraday. Symp. Chem. Soc.
2, 7
(1968);
10.1039/sf9680200007 Google ScholarR.McWeeny and N. G.Mukherjee, Int. J. Quantum Chem. 4, 97 (1970).10.1002/qua.560040109 Google Scholar
- 12 A. T.Amos, Mol. Phys. 5, 91 (1962).
- 13 G.Berthier, Molecular Orbitals in Chemistry, Physics and Biology, P.-O. Löwdin and B. Pullman, Eds. (Academic, New York, 1964).
- 14 J. A.Pople, D. P.Santry, and G. A.Segal, J. Chem. Phys. 43, S129 (1965); J. A.Pople and G. A.Segal, J. Chem. Phys. 43, S136 (1965).
- 15 S. P.Bhattacharyya and D.Mukherjee (unpublished).
- 16 J. H.Wilkinson, Algebraic Eigenvalue Problem (Clarendon, Oxford, 1977), pp. 570–647.