Hydrogen atom abstraction reactions of the sugar moiety of 2′-deoxyguanosine with an OH radical: A quantum chemical study
P. K. Shukla
Department of Physics, Banaras Hindu University, Varanasi 221005, India
Search for more papers by this authorN. Kumar
Department of Physics, Banaras Hindu University, Varanasi 221005, India
Search for more papers by this authorCorresponding Author
P. C. Mishra
Department of Physics, Banaras Hindu University, Varanasi 221005, India
Department of Physics, Banaras Hindu University, Varanasi 221005, IndiaSearch for more papers by this authorP. K. Shukla
Department of Physics, Banaras Hindu University, Varanasi 221005, India
Search for more papers by this authorN. Kumar
Department of Physics, Banaras Hindu University, Varanasi 221005, India
Search for more papers by this authorCorresponding Author
P. C. Mishra
Department of Physics, Banaras Hindu University, Varanasi 221005, India
Department of Physics, Banaras Hindu University, Varanasi 221005, IndiaSearch for more papers by this authorAbstract
Mechanisms of hydrogen atom abstraction reactions of the sugar moiety of 2′-deoxyguanosine with an OH radical were investigated using the B3LYP and BHandHLYP functionals of density functional theory and the second order Møller–Plesset Perturbation (MP2) theory in gas phase and aqueous media. The 6-31+G* and AUG-cc-pVDZ basis sets were used. Gibbs free barrier energies and rate constants of the reactions in aqueous media suggest that an OH radical would abstract the hydrogen atoms of the sugar moiety of 2′-deoxyguanosine in the following order of preference: H5′ ≈ H5″ > H3′ > H4′ > H1′ ≈ H2′ > H2″, the rate constant for H5′ abstraction being 103–105 times greater than that for H2″ at the different levels of theory. Relative stabilities of the different deoxyribose radicals are also discussed. The most and least favored hydrogen abstraction reactions found here are in agreement with experimental observation. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011
References
- 1 Dedon, P. C. Chem Res Toxicol 2008, 21, 206.
- 2 Pogozelski, W. K.; Tullius, T. D. Chem Rev 1998, 98, 1089.
- 3
von Sonntag, C.
Free-Radical-Induced DNA Damage and Its Repair: A Chemical Perspective;
Springer:
Berlin,
2006.
10.1007/3-540-30592-0 Google Scholar
- 4 Greenberg, M. M. Org Biomol Chem 2001, 5, 18.
- 5 Boussicault, F.; Kaloudis, P.; Caminal, C.; Mulazzani, Q. G.; Chatgilialoglu, C. J Am Chem Soc 2008, 130, 8377.
- 6 Hole, E. O.; Nelson, W. H.; Sagstuen, E.; Close, D. M. Radiation Res 1992, 129, 119.
- 7 Shukla, L. I.; Pazdro, R.; Huang, J.; DeVreugd, C.; Becker, D.; Sevilla, M. D. Radiation Res 2004, 161, 582.
- 8 Adhikary, A.; Khanduri, D.; Kumar, A.; Sevilla, M. D. J Phys Chem B 2008, 112, 15844.
- 9 Cadet, J.; Delatour, T.; Douki, T.; Gasparutto, D.; Pouget, J. P.; Ravanat, J. L.; Sauvaigo, S. Mutat Res 1999, 424, 9.
- 10 Jena, N. R.; Mishra, P. C. J Phys Chem B 2005, 109, 14205.
- 11 Colson, A.-O.; Sevilla, M. D. J Phys Chem 1995, 99, 3867.
- 12 Bothe, E.; Görner, H.; Opitz, J.; Schulte-Frohlinde, D.; Siddiqi, A.; Wala, M. Photochem Photobiol 1990, 52, 949.
- 13 Hüttermann, J.; Bernhard, W. A.; Haindl, E.; Schmidt, G. J Phys Chem 1977, 81, 228.
- 14 Balasubramanian, B.; Pogozelski, W. K.; Tullius, T. D. Proc Natl Acad Sci (U.S.A.) 1998, 95, 9738.
- 15 Miaskiewicz, K.; Osman, R. J Am Chem Soc 1994, 116, 232.
- 16 Wetmore, S. D.; Boyd, R. J.; Eriksson, L. A. J Phys Chem B 1998, 102, 7674.
- 17 Toure, P.; Villena, F.; Melikyan, G. G. Org Lett 2002, 4, 3989.
- 18 Sarma, R. L.; Medhi, C. J Mol Stuct Theochem 2006, 763, 51.
- 19(a) Li, M.-J.; Liu, L.; Fu, Y.; Guo, Q.-X. J Phys Chem B 2005, 109, 13818; (b) Li, M.-J.; Liu, L.; Wei, K.; Fu, Y.; Guo, Q.-X. J Phys Chem B 2006, 110, 13582.
- 20 Evangelista, F. A.; Schaefer, H. F. J Phys Chem A 2004, 108, 10258.
- 21 Mishra, S. K.; Mishra, P. C. J Comput Chem 2002, 23, 530.
- 22(a) Becke, A. D. J Chem Phys 1993, 98, 5648; (b) Becke, A. D. J Chem Phys 1996, 104, 1040.
- 23 Lee, C.; Yang, W.; Parr, R. G. Phys Rev B 1988, 37, 785.
- 24(a) Frisch, M. J.; Head-Gordon, M.; Pople, J. A. Chem Phys Lett 1990, 166, 275; (b) Frisch, M. J.; Head-Gordon, M.; Pople, J. A. Chem Phys Lett 1990, 166, 281.
- 25 Mennucci, B.; Tomasi, J. J Chem Phys 1997, 106, 5151.
- 26 McQuarrie, D. A.; Simon, J. D. Physical Chemistry: A Molecular Approach; University Science Books: 55D Five Gate Road, Sausalito, California 94965, USA, 1997.
- 27(a) Wigner, E. Z Phys Chem, B. 1932, 19, 203; (b) Barreto, P. R. P.; Vilela, A. F. A.; Gargano, R. J Mol Struct Theochem 2003, 664–665, 135.
- 28 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.,Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammy, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Rega, N.; Salvodar, P.; Dannenberg, J. J.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A. 11.2; Gaussian, Inc.: Pittsburgh, PA, 2001.
- 29 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery,Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision D.01; Gaussian, Inc.: Wallingford, CT, 2004.
- 30 Frisch, A. E.; Dennington, R. D.; Keith, T. A.; Neilsen, A. B.; Holder, A. J. GaussView, Rev. 3.09; Gaussian: Pittsburgh, PA, 2003.
- 31 Zhang, R. B.; Gao, F. X.; Eriksson, L. A. J Chem Theor Comput 2007, 3, 803.
- 32 Zhang, R. B.; Eriksson, L. A. Chem Eur J 2009, 15, 2394.
- 33(a) Buxton, G. V.; Greenstock, C. L.; Helman, W. P.; Ross, A. B. J Phys Chem Ref Data 1988, 17, 513 and references cited therein; (b) Michaels, H. B.; Hunt, J. W. Radiat Res 1973, 56, 57; (c) Moore, J. S.; Kemsley, K. G.; Davies, J. V.; Phillips, G. O. In Radiation Biology and Chemistry Research Developments; H. E. Edwards; S. Navaratnam; B. J. Parsons; G. O. Phillips Eds.; (Proceedings of the Association for Radiation Research, Winter Meeting, January 3–5, 1979), Elsevier: New York, 1979, pp 99.
- 34 Tomasi, J.; Mennucci, B.; Cammi, R. Chem Rev 2005, 105, 2999.
- 35 Kumar, A.; Mishra, P. C.; Suhai, S. J Phys Chem A 2005, 109, 3971.
- 36 Jena, N. R.; Mishra, P. C. Theor Chem Acc 2005, 114, 189.
- 37 Tiwari, S.; Mishra, P. C.; Suhai, S. Int J Quantum Chem 2008, 108, 1004.