Configuration interaction calculations on the 2P ground state of boron atom and C+ using Slater orbitals
Corresponding Author
M. Belén Ruiz
Department of Theoretical Chemistry of the Friedrich-Alexander-University Erlangen-Nürnberg, Egerlandstraße 3, D-91058, Erlangen, Germany
Department of Theoretical Chemistry of the Friedrich-Alexander-University Erlangen-Nürnberg, Egerlandstraße 3, D-91058, Erlangen, GermanySearch for more papers by this authorMiguel Rojas
Department of Theoretical Chemistry of the Friedrich-Alexander-University Erlangen-Nürnberg, Egerlandstraße 3, D-91058, Erlangen, Germany
Search for more papers by this authorGuillermo Chicón
Department of Theoretical Chemistry of the Friedrich-Alexander-University Erlangen-Nürnberg, Egerlandstraße 3, D-91058, Erlangen, Germany
Search for more papers by this authorPeter Otto
Department of Theoretical Chemistry of the Friedrich-Alexander-University Erlangen-Nürnberg, Egerlandstraße 3, D-91058, Erlangen, Germany
Search for more papers by this authorCorresponding Author
M. Belén Ruiz
Department of Theoretical Chemistry of the Friedrich-Alexander-University Erlangen-Nürnberg, Egerlandstraße 3, D-91058, Erlangen, Germany
Department of Theoretical Chemistry of the Friedrich-Alexander-University Erlangen-Nürnberg, Egerlandstraße 3, D-91058, Erlangen, GermanySearch for more papers by this authorMiguel Rojas
Department of Theoretical Chemistry of the Friedrich-Alexander-University Erlangen-Nürnberg, Egerlandstraße 3, D-91058, Erlangen, Germany
Search for more papers by this authorGuillermo Chicón
Department of Theoretical Chemistry of the Friedrich-Alexander-University Erlangen-Nürnberg, Egerlandstraße 3, D-91058, Erlangen, Germany
Search for more papers by this authorPeter Otto
Department of Theoretical Chemistry of the Friedrich-Alexander-University Erlangen-Nürnberg, Egerlandstraße 3, D-91058, Erlangen, Germany
Search for more papers by this authorAbstract
Configuration Interaction (CI) calculations on the ground 2P state of boron atom are presented using a wave function expansion constructed with L-S eigenfunction configurations of s-, p-, and d-Slater orbitals. Two procedures of optimization of the orbital exponents have been investigated. First, CI(SD) calculations including few types of configurations and full optimization of the orbital exponents led to the energy −24.63704575 a.u. Second, full-CI (FCI) calculations including a large number of configuration types using a fixed set of orbital exponents for all configurations gave −24.63405222 a.u. using the basis [4s3p2d] and 2157 configurations, and to an improved result of −24.64013999 a.u. for 3957 configurations and a [5s4p3d] basis. This last result is better than earlier calculations of Schaefer and Harris (Phys Rev 1968, 167, 67), and compares well with the recent ones from Froese Fischer and Bunge (personal communication). In addition, using the same wave functions, CI calculations of the boron isoelectronic ion C+ have been performed obtaining an energy of −37.41027598 a.u. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011
References
- 1 Hylleraas, E. A. Z Phys 1929, 54, 347.
- 2 Sims, J. S.; Hagstrom, S. A. J Chem Phys 1971, 55, 4699.
- 3 Sims, J. S.; Hagstrom, S. A. Phys Rev A 1971, 4, 908.
- 4 Kutzelnigg, W.; Morgan, J. D. III. J Chem Phys 1992, 96, 4484.
- 5 Schaefer, H. F.; Harris, F. E. Phys Rev 1968, 167, 67.
- 6 Schaefer, H. F. Configuration Interation Wave Functions and Properties of Atoms and Diatomic Molecules, Ph.D. Thesis, Stanford University, 1969.
- 7 Sasaki, F.; Yoshimine, M. Phys Rev A 1974, 9, 17.
- 8 Feller, D.; Davidson, E. R. J Chem Phys 1988, 88, 7580.
- 9 Froese Fischer, C.; Ynnerman, A.; Gaigalas, G. Phys Rev A 1995, 51, 4611.
- 10 Jönsson, P.; Froese Fischer, C. Phys Rev A 1994, 50, 3080.
- 11 Almora-Díaz, C. X. Ionization energy and electron affinity of neutral boron, Universidad Nacional Autónoma de México, 2009.
- 12 Sims, J. S.; Hagstrom, S. A. Phys Rev A 2009, 80 (to be published).
- 13 Ruiz, M. B. J Math Chem 2009, 46, 24.
- 14 Bunge, A. V.; Bunge, C. F.; Jauregui, R.; Cisneros, G. Computers Chem 1989, 13, 201; Jauregui, R.; Bunge, C. F.; Bunge, A. V.; Cisneros, G. Computers Chem 1989, 13, 223; Bunge, A. V.; Bunge, C. F.; Jauregui, R.; Cisneros, G. Computers Chem 1989, 13, 239; Cisneros, G.; Jauregui, R.; Bunge, C. F.; Bunge, A. V. Computers Chem 1989, 13, 255; Bunge, C. F. Computers Chem 1989, 13, 271; Bunge, C. F.; Jauregui, R.; Cisneros, G. Computers Chem 1989, 13, 277; AUTOCL: Program for the Generation of L-S Eigenfunctions; México, 1966–2003.
- 15 Ema, N. Program for the generation of N-electron spherical harmonics; Madrid, 2009.
- 16 Ruiz, M. B. Int J Quantum Chem 2004, 100, 246.
- 17 Ruiz, M. B. Int J Quantum Chem 2004, 100, 261.
- 18 Ruiz, M. B. In Mathematical Chemistry; F. Columbus, Ed.; Nova Publishers: New York (to be published).
- 19 Cencek, W.; Rychlewski, J. J Chem Phys 1993, 98, 1252.
- 20 Ruiz, M. B. (to be published).
- 21 Komasa, J.; Rychlewski, J.; Jankowski, K. Phys Rev A 2002, 65, 042507.
- 22 Bunge, C. F. Phys Rev 1976, 14, 1965.
- 23 Sims, J. S.; Hagstrom, S. A. Int J Quantum Chem 2002, 90, 1600.
- 24 Kleindienst, H.; Lüchow, A. Int J Quantum Chem 1993, 45, 87.
- 25 Büsse, G.; Kleindienst, H.; Lüchow, A. Int J Quantum Chem 1998, 66, 241.
- 26 Clementi, E.; Roetti, C. At Data Nucl Data Tables 1974, 14, 177.
- 27 Mayer, I. (a)Dupuis, M.; Farazdel, A. HONDO-8, from MOTECC-91. IBM Corporation Center for Scientific and Engineering Computations: Kingston, NY, 1991; (b) Knowles, P. J.; Handy, N. C. Chem Phys Lett 1984, 111, 315; Knowles, P. J.; Handy, N. C. Computer Phys Commun 1989, 54, 75.
- 28 Weiss, A. W. Phys Rev 1969, 188, 119.
- 29 Froese Fischer, C. Comp Phys Comm 1991, 64, 369.
- 30 Gálvez, F. J.; Buendía, E.; Sarsa, A. J Chem Phys 2005, 122, 154307.
- 31 Meyer, H.; Müller, T.; Schweig, A. Chem Phys 1995, 191, 213.
- 32 Brown, M. D.; Trail, J. R.; López Ríos, P.; Needs, R. J. J Chem Phys 2007, 126, 224110.
- 33 Bubin, S.; Stanke, M.; Adamowicz, L. J Chem Phys 2009, 131, 044128.
- 34 Chakravorty, S. J.; Gwaltney, S. R.; Davidson, E. R.; Parpia, F. A.; Froesse Fischer, C. Phys Rev A 1993, 47, 3649.
- 35 Weiss, A. W. Phys Rev 1967, 162, 71.
- 36 Sundholm, D.; Olsen, J. Phys Rev A 1994, 49, 3453.
- 37 Moskowitz, J. W.; Schmidt, K. E. J Chem Phys 1992, 97, 3382.
- 38 Gdanitz, R. J. J Chem Phys 1998, 109, 9795.
- 39 Bae, Y. K.; Peterson, J. R. Phys Rev A 1984, 30, 2145.
- 40 Sanz-Vicario, J. L.; Cardona Gómez, J. C. Revista Colombiana de Física 2004, 36, 214.
- 41 Lindroth, E.; Sanz-Vicario, J. L. Radiat Phys Chem 2004, 70, 387.
- 42 Kurtz, H. A.; Öhrn, Y. Phys Rev A 1979, 19, 43.
- 43 McCurdy, C. W.; Rescigno, T. N.; Davidson, E. R.; Lauderdale, J. G. J Chem Phys 1980, 73, 3268.
- 44 Samanta, K.; Yeager, D. L. J Phys Chem B 2008, 112, 16214.
- 45 Beck, D. R.; Nicolaides, C. A.; Aspromallis, G. Phys Rev A 1981, 24, 3252.
- 46 Weiss, A. W. Phys Rev 1968, 166, 70.
- 47 Bunge, A. V. Phys Rev A 1986, 33, 82.
- 48 Froese Fischer, C. Phys Rev A 1990, 41, 3481.
- 49 Froese Fischer, C. Phys Rev A 1991, 44, 72.