The impact of basis set superposition error on the structure of ππ dimers
Dolly Vijay
Molecular Modeling Group, Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
Search for more papers by this authorHidehiro Sakurai
Research Center for Molecular-Scale Nanoscience, Institute for Molecular Science, Myodaiji, Okazaki 444-8787, Japan and PRESTO, Japan Science and Technology Agency, Tokyo 102-0075, Japan
Search for more papers by this authorCorresponding Author
G. Narahari Sastry
Molecular Modeling Group, Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
Molecular Modeling Group, Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, IndiaSearch for more papers by this authorDolly Vijay
Molecular Modeling Group, Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
Search for more papers by this authorHidehiro Sakurai
Research Center for Molecular-Scale Nanoscience, Institute for Molecular Science, Myodaiji, Okazaki 444-8787, Japan and PRESTO, Japan Science and Technology Agency, Tokyo 102-0075, Japan
Search for more papers by this authorCorresponding Author
G. Narahari Sastry
Molecular Modeling Group, Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
Molecular Modeling Group, Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, IndiaSearch for more papers by this authorAbstract
The effect of basis set superposition error (BSSE) on the structure and energy of benzene, naphthalene, corannulene, and sumanene dimer has been analyzed. MP2 method was chosen and the effect is estimated using 6-31G, 6-31G(d), 6-311+G(d), cc-pVDZ, and cc-pVTZ basis sets. The model calculations on benzene dimer indicate that the impact of BSSE on the equilibrium geometry of π-stacked dimers appears to be quite significant. Calculations on larger molecular dimers such as the dimers of naphthalene, corannulene, and sumanene are also studied. The practical implication of the current observation on modeling the macromolecular structure is discussed. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
QUA_22486_sm_suppinfo.doc444.5 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Lee, E. C.; Kim, D.; Jurečka, P.; Tarakeshwar, P.; Hobza, P.; Kim, K. S. J Phys Chem A 2007, 111, 3446.
- 2 Meyer, E. A.; Castellano, R. K.; Diederich, F. Angew Chem Int Ed 2003, 42, 1210.
- 3 Mignon, P.; Loverix, S.; Steyaert, J.; Geerlings, P. Nucleic Acids Res 2005, 33, 1779.
- 4 Reddy, A. S.; Vijay, D.; Sastry, G. M.; Sastry, G. N. J Phys Chem B 2006, 110, 2479.
- 5 Burley, S. K.; Petsko, G. A. Science 1985, 229, 23.
- 6 Waller, M. P.; Robertazzi, A.; Platts, J. A.; Hibbs, D. E.; Williams, P. A. J Comput Chem 2006, 27, 491.
- 7 Zhao, Y.; Truhlar, D. G. Phys Chem Chem Phys 2005, 7, 2701.
- 8 Puzder, A.; Dion, M.; Langreth, D. C. J Chem Phys 2006, 124, 164105.
- 9 Johnson, E. R.; Wolkow, R. A.; DiLabio, G. A. Chem Phys Lett 2004, 394, 334.
- 10 Zhao, Y.; Truhlar, D. E. Phys Chem Chem Phys 2008, 10, 2813.
- 11 Zhao, Y.; Truhlar, D. E. J Chem Theory Comput 2007, 3, 289.
- 12 Riley, K. E.; Hobza, P. J Phys Chem A 2007, 111, 8257.
- 13 Sinnokrot, M. O.; Sherrill, C. D. J Phys Chem A 2006, 110, 10656.
- 14 Janowski, T.; Pulay, P. Chem Phys Lett 2007, 447, 27.
- 15 Sinnokrot, M. O.; Sherrill, C. D. J Am Chem Soc 2004, 126, 7690.
- 16 Sinnokrot, M. O.; Valeev, E. F.; Sherrill, C. D. J Am Chem Soc 2002, 124, 10887.
- 17 Liu, B.; McLean, A. D. J Chem Phys 1973, 59, 4557.
- 18 Alagona, G.; Ghio, C.; Tomasi, S. Theor Chem Acc 2004, 111, 287.
- 19 Grabowski, S. J.; Sokalski, W. A.; Leszczynski, J. Chem Phys Lett 2006, 432, 33.
- 20 Grabowski, S. J.; Sadlej, A. J.; Sokalski, W. A.; Leszczynski, J. Chem Phys 2006, 327, 151.
- 21 van Duijneveldt, F. B.; van Duijneveldt-van de Rijdt, J. G. C. M.; van Lenthe, J. H. Chem Rev 1994, 94, 1873.
- 22 Gutowski, M.; van Duijneveldt-van de Rijdt, J. G. C. M.; van Lenthe, J. H.; van Duijneveldt, F. B. J Chem Phys 1993, 98, 4728.
- 23 Xantheas, S. S. J Chem Phys 1996, 104, 8821.
- 24 Salvador, P.; Paizs, B.; Duran, M.; Suhai, S. J Comput Chem 2001, 22, 765.
- 25 Kallies, B.; Mitzner, R. J Mol Model 1995, 1, 68.
- 26 Alagona, G.; Ghio, C.; Monti, S. Int J Quantum Chem 2001, 83, 128.
- 27 Rayon, V. M.; Sordo, J. A. Theor Chem Acc 1998, 99, 68.
- 28 Simon, S.; Duran, M.; Dannenberg, J. J. J Chem Phys 1996, 24, 11024.
- 29 Simon, S.; Duran, M.; Dannenberg, J. J. J Phys Chem A 1999, 103, 1640.
- 30 Kobko, N.; Dannenberg, J. J. J Phys Chem A 2001, 105, 1944.
- 31 Hermida-Ramón, J. M.; Graňa, A. M. J Comput Chem 2007, 28, 540.
- 32 Berski, S.; Latajka, Z. Comput Chem 1996, 21, 347.
- 33 Simon, S.; Duran, M. J Chem Phys 1996, 105, 11024.
- 34 Hugas, D.; Simon, S.; Duran, M. Chem Phys Lett 2004, 386, 373.
- 35 Saeki, M.; Akagi, H. J Chem Theory Comput 2006, 2, 1176.
- 36 Hobza, P.; Havlas, Z. Theor Chem Acc 1998, 99, 372.
- 37 Kolář, M.; Hobza, P. J Phys Chem A 2007, 111, 5851.
- 38 Sakurai, H.; Daiko, T.; Sakane, H.; Amaya, T. J Am Chem Soc 2005, 127, 11580.
- 39 Kawase, T.; Kurata, H. Chem Rev 2006, 106, 5250.
- 40 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision A.1; Gaussian, Inc.: Pittsburgh, PA, 2003.
- 41 Boys, S. F.; Bernardi, F. Mol Phys 1970, 19, 553.
- 42 Sherrill, C. D.; Takatani, T.; Hohenstein, E. G. J Phys Chem A 2009, 113, 10146–10159.
- 43 Vijay, D.; Sastry, G. N. Phys Chem Chem Phys 2008, 10, 582.
- 44 Schreiner, P. R.; Fokin, A. A.; Pascal, R. A., Jr.; de Meijere, A. Org Lett 2006, 8, 3635.
- 45 Wei, Y.; Singer, T.; Mayr, H.; Sastry, G. N.; Zipse, H. J Comput Chem 2008, 29, 291.
- 46 Tsuzuki, S.; Honda, K.; Uchimaru, T.; Mikami, M. J Chem Phys 2004, 120, 647.
- 47 Gonzalez, C.; Kim, E. C. J Phys Chem A 2000, 104, 2953.
- 48 Tsuzuki, S.; Uchimaru, T.; Matsumura, K.; Mikami, M.; Tanabe, K. Chem Phys Lett 2000, 319, 547.
- 49 Walsh, T. R. Chem Phys Lett 2002, 363, 45.