The nitric oxide adsorption on gold neutral, cation, and anion atoms: A comparative ab initio MRCI—MRPT2 studies†
Corresponding Author
O. Olvera-Neria
Área de Física Atómica Molecular Aplicada (FAMA), CBI, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Col. Reynosa Tamaulipas, México, D. F. 02200, México
Área de Física Atómica Molecular Aplicada (FAMA), CBI, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Col. Reynosa Tamaulipas, México, D. F. 02200, MéxicoSearch for more papers by this authorV. Bertin
Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, México, D.F. 09340, México
Search for more papers by this authorE. Poulain
Área de Física Atómica Molecular Aplicada (FAMA), CBI, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Col. Reynosa Tamaulipas, México, D. F. 02200, México
Search for more papers by this authorCorresponding Author
O. Olvera-Neria
Área de Física Atómica Molecular Aplicada (FAMA), CBI, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Col. Reynosa Tamaulipas, México, D. F. 02200, México
Área de Física Atómica Molecular Aplicada (FAMA), CBI, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Col. Reynosa Tamaulipas, México, D. F. 02200, MéxicoSearch for more papers by this authorV. Bertin
Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, México, D.F. 09340, México
Search for more papers by this authorE. Poulain
Área de Física Atómica Molecular Aplicada (FAMA), CBI, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Col. Reynosa Tamaulipas, México, D. F. 02200, México
Search for more papers by this authorThis article is dedicated to the memory of our dear friend Jean Pierre Daudey, Laboratoire de Physique Quantique de Toulouse (IRSAMC), he wrote one of the programs used here.
Abstract
The Auν + NO(2Π) → AuNOν reaction, for ν = −1, 0, +1, anion, neutral, and cation are calculated and predicted at multireference configuration interaction (MRCI) and multireference second order perturbation (MRPT2) levels of theory, in this way the main parameters: reaction path surfaces, total and adsorption energies, optimized geometries, and Mulliken charges distribution are presented and compared. The AuNO (X 1A′) complex is created spontaneously with −11.32 and −13.14 kcal/mol adsorption energies with the MRCI and MRPT2 approaches, respectively. The AuNO bonding in the neutral gold nitrosyl complex has a covalent character and the nitric oxide (NO) molecule is not dissociated. The others excited states (a 3A″, b 3A′, and A 1A″) do not present bonding. The gold nitrosyl cationic (X 2A′, A 2A″, and a 4A″) and anionic (X 2A″ and a 4A″) are bonding and present a dative covalent bond. The Mulliken analysis done for ionic species show that the binding is done through soft electrostatic interactions, due to that there is some charge transfer, delocalized onto the NO molecule for the AuNO± ionic species whereas the AuNO (X 1A′) neutral complex presents a little charge transfer. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011
References
- 1 Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Chem Lett 1987, 2, 405.
- 2 Haruta, M.; Yamada, M.; Kobayashi, T.; Iijima, S. J Catal 1989, 115, 301.
- 3 Bamwenda, R.; Tsubota, S.; Nakamura, T.; Haruta, M. Catal Lett 1997, 44, 83.
- 4 Haruta, M. Catal Today 1997, 36, 153.
- 5 Haruta, M.; Daté, M. Appl Catal A 2001, 222, 427.
- 6 Haruta, M. CATTECH 2002, 6, 102.
- 7 Haruta, M. Chem Rec 2003, 3, 75.
- 8 Haruta, M. Gold Bull 2004, 37, 27.
- 9 Endou, A.; Ohashi, N.; Takami, S.; Kubo, M.; Miyamoto, A.; Broclawick, E. Top Catal 2000, 11, 271.
- 10 Garin, F. Appl Catal A 2001, 222, 183.
- 11 Degobert, P. Automobiles and Pollution Control, Commercial Technology; Van Nostrand Reinhold: New York, 1995.
- 12 Obuchi, A.; Kaneko, I.; Oi, J.; Ohi, A.; Ogata, A.; Bamwenda, G. R.; Kushiyama, S. Appl Catal B 1998, 15, 37.
- 13 Iwamoto, M.; Yahiro, H.; Shin, H. K.; Watanabe, M.; Guo, J.; Cono, M.; Chikahisa, T.; Murayama, T. Appl Catal B 1994, 5, L1.
- 14 Ciambelli, P.; Corbo, P.; Gambino, M.; Minelli, G.; Moretti, G.; Porta, P. Catal Today 1995, 26, 33.
- 15 Berko, A.; Solymosi, F. J Catal 1999, 183, 91.
- 16 Newton, M. A.; Dent, A. J.; Fiddy, S. G.; Jyoti, B.; Evans, J. J Mater Sci 2007, 42, 3288.
- 17 Klein, R.; Shih, A. Surf Sci 1977, 69, 403.
- 18 McClure, S. M.; Kim, T. S.; Stiehl, J. D.; Tanaka, P. L.; Mullins, C. B. J Phys Chem B 2004, 108, 17952.
- 19 Debeila, M. A.; Coville, N. J.; Scurrell, M. S.; Hearne, G. R. Appl Catal A 2005, 291, 98.
- 20 Citra, A.; Wang, X.; Andrews, L. J Phys Chem A 2002, 106, 3287.
- 21 Ding, X.; Li, Z.; Yang, J.; Hou, J. G.; Zhu, Q. J Chem Phys 2004, 121, 2558.
- 22 Solymosi, F.; Bánsági, T.; Süli Zakar, T. Catal Lett 2003, 87, 7.
- 23 Solymosi, F.; Bánsági, T.; Süli Zakar, T. Phys Chem Chem Phys 2003, 5, 4724.
- 24 Ilieva, L.; Pantaleo, G.; Ivanov, I.; Nedyalkova, R.; Venecia, A. M. Catal Today 2008, 139, 168.
- 25 Huron, B. H.; Malrieu, J. P.; Rancurel, P. J Chem Phys 1973, 58, 5745. CIPSI code written by Daudey, J. P.; Pélissier, M.; Malrieu, J. P.; Evangelisti, S.; Spiegelmann, F.; Maynau, D.
- 26 Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A. J Comput Chem 1993, 14, 1347.
- 27 Hirao, K. Chem Phys Lett 1992, 190, 374.
- 28 Hirao, K. Chem Phys Lett 1992, 196, 397.
- 29 Hirao, K. Int J Quantum Chem 1992, S26, 517.
- 30 Ruedenberg, K.; Sundberg, K. R. In Quantum Science; J. L. Calais, O. Goscinski, J. Linderberg, Y. Öhrn, Eds.; Plenum: New York, 1976.
- 31 Cheung, L. M.; Sundberg, K. R.; Ruedenberg, K. J Am Chem Soc 1978, 100, 8024.
- 32 Cheung, L. M.; Sundberg, K. R.; Ruedenberg, K. Int J Quantum Chem 1979, 16, 1103.
- 33 Ruedenberg, K.; Schmidt, M. W.; Gilbert, M. M.; Elbert, S. T. Chem Phys 1982, 71, 41.
- 34 Ruedenberg, K.; Schmidt, M. W.; Gilbert, M. M. Chem Phys 1982, 71, 51.
- 35 Ruedenberg, K.; Schmidt, M. W.; Gilbert, M. M.; Elbert, S. T. Chem Phys 1982, 71, 65.
- 36 Feller, D. F.; Schmidt, M. W.; Ruedenberg, K. J Am Chem Soc 1982, 104, 960.
- 37 Ross, R. B.; Ermler, W. C.; Christiansen, P. A. J Chem Phys 1990, 93, 6654.
- 38 Schafer, A.; Huber, C.; Ahlrichs, R. J Chem Phys 1994, 100, 5829.
- 39 Feller, D. J Comput Chem 1996, 17, 1571.
- 40 Schuchardt, K. L.; Didier, B. T.; Elsethagen, T.; Sun, L.; Gurumoorthi, V.; Chase, J.; Li, J.; Windus, T. L. J Chem Inf Model 2007, 47, 1045.
- 41 Moore, C. E. Atomic Energy Levels, Vol. 3; Natl. Bur. Stand. Ref. Data Ser., Natl. Bur. Stand. (U.S.) Circ. No. 35 U.S. GPO: Washington, DC, 1971.
- 42 Moore, C. E. Ionization Potentials and Ionization Units Derived from the Analysis of Optical Spectra; National Bureau of Standards: Washington, DC, 1970.
- 43 Hotop, H.; Lineberger, W. C. J Phys Chem 1985, 14, 731.
- 44
Huber, K. P.;
Herzberg, G.
Molecular Spectra and Molecular Structure IV, Constants of Diatomic Molecules;
Van Nostrand Reinhold:
New York,
1979.
10.1007/978-1-4757-0961-2 Google Scholar
- 45 Ruedenberg, K. Rev Mod Phys 1962, 34, 326.
- 46 Minic, S.; Scir, S.; Crisafulli, C.; Visco, A. M.; Galvagno, S. Catal Lett 1997, 47, 273.
- 47 Hao, Z.; An, L.; Wang, H.; Hu, T. React Kinet Catal Lett 2000, 70, 153.
- 48 Horvàth, D.; Toth, L.; Guczi, L. Catal Lett 2000, 67, 117.
- 49 Wagner, F. E.; Galvagno, S.; Milone, C.; Visco, A. M.; Stievano, L.; Calogero, S. J Chem Soc Faraday Trans 1997, 93, 3403.
- 50 Bond, G. C.; Thompson, D. T. Gold Bull 2000, 33, 41.