Theoretical study of the reactions of lanthanide ions (Ce+, Pr+) with CO2 in the gas phase
Corresponding Author
Yong-Cheng Wang
College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of ChinaSearch for more papers by this authorHui-Wen Liu
College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
Search for more papers by this authorZhi-Yuan Geng
College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
Search for more papers by this authorLing-Ling Lv
College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
Search for more papers by this authorYu-Bing Si
College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
Search for more papers by this authorQing-Yun Wang
College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
Search for more papers by this authorQiang Wang
College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
Search for more papers by this authorDan-Dan Cui
College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
Search for more papers by this authorCorresponding Author
Yong-Cheng Wang
College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of ChinaSearch for more papers by this authorHui-Wen Liu
College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
Search for more papers by this authorZhi-Yuan Geng
College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
Search for more papers by this authorLing-Ling Lv
College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
Search for more papers by this authorYu-Bing Si
College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
Search for more papers by this authorQing-Yun Wang
College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
Search for more papers by this authorQiang Wang
College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
Search for more papers by this authorDan-Dan Cui
College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
Search for more papers by this authorAbstract
The mechanisms of the reaction of lanthanide ions (Ce+ and Pr+) with the carbon dioxide were investigated at the B3LYP level of theory. The crossing points (CPs) between the different potential energy surfaces (PESs) have been located by means of the intrinsic reaction coordinate approach used by Yoshizawa et al., and corresponding minimum energy crossing points (MECPs) that we obtained by the mathematical algorithm proposed by Harvey et al. has also been used. In addition, possible spin inversion processes are discussed by means of spin-orbit coupling (SOC) calculations. The value of 61.68 cm−1 (for MECP1) and 69.17 cm−1 (for MECP2) for the SOC constants indicates that the spin crossing process in Ln+ + CO2 (1∑) reaction can be occurred efficiently because of the large SOC involved. And the O-atom affinities (OA) testified that the argumentation is thermodynamically allowed. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011
Supporting Information
Filename | Description |
---|---|
QUA_22479_sm_suppinfo.doc80.5 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. Advanced Inorganic Chemistry, 6th ed.; Wiley: New York, 1999.
- 2 Caballol, R.; Sánchez, E.; Barthelat, J. C. J Phys Chem 1987, 91, 1328.
- 3 Pápai, I.; Schubert, G.; Hannachi, Y.; Mascetti, J. J Phys Chem A 2002, 106, 9551.
- 4 Sodupe, M.; Branchadell, V.; Rosi, M.; Bauschlicher, C. W. J Phys Chem A 1997, 101, 7854.
- 5 Hwang, D. Y.; Mebel, A. M. J Phys Chem 2002, 116, 5633.
- 6 Sievers, M. R.; Armentrout, P. B. Int J Mass Spectrom 1998, 179, 115.
- 7 Li, T. H.; Xie, X. G.; Gao, S. L.; Wang, C. M.; Cheng, W. X.; Pan, X. L.; Cao, H. J. Mol Struct Theochem 2005, 724, 125.
- 8 Mascetti, J.; Tranquille, M. J Phys Chem 1988, 92, 2177.
- 9 Pápai, I.; Hannachi, Y.; Gwizdala, S.; Mascetti, J. J Phys Chem A 2002, 106, 4181.
- 10 Hwang, D. Y.; Mebel, A. M. Chem Phys Lett 2002, 357, 51.
- 11 Hwang, D. Y. J Phys Chem 2002, 116, 5633.
- 12 Rondinelli, F.; Russo, N.; Toscano, M. Theor Chem Acc 2006, 115, 434.
- 13 Chen, X. Y.; Zhao, Y. X.; Wang, S. G. J Phys Chem A 2006, 110, 3552.
- 14 Tommaso, S. D.; Marino, T.; Rondinelli, F.; Russo, N.; Toscano, M. J Chem Theory Comput 2007, 3, 811.
- 15 Koyanagi, G. K.; Bohme, D. K. J Phys Chem A 2006, 110, 1232.
- 16 Rondinelli, F.; Russo, N.; Toscano, M. Theor Chem Acc 2006, 115, 434.
- 17 Cheng, P.; Koyanagi, G. K.; Bohme, D. K. J Phys Chem A 2006, 110, 12832.
- 18 Wang, Y. C.; Yang, X. Y.; Geng, Z. Y.; Liu, Z. Y. Chem Phys Lett 2006, 431, 39.
- 19 Jiang, L.; Zhang, X. B.; Han, S.; Xu, Q. Inorg Chem 2008, 47, 4826.
- 20 Wang, X. F.; Chen, M. H.; Zhang, L. N.; Qin, Q. Z. J Phys Chem A 2000, 104, 758.
- 21 Gibson, D. H. Chem ReV 2063, 1996, 96.
- 22 Gibson, D. H. Coord Chem ReV 1999, 335, 185.
- 23 Oakes, R. S.; Clifford, A. A.; Rayner, C. M. J Chem Soc Perkin Trans 2001, 1, 917.
- 24 Leitner, W. Acc Chem Res 2002, 35, 746.
- 25 Beckman, E. J. J Supercrit Fluids 2004, 28, 121.
- 26 Rayner, C. M. Org Process Res 2007, 11, 121.
- 27 Yoshizawa, K.; Shiota, Y.; Yamabe, T. J Chem Phys 1999, 111, 538.
- 28 Harvey, J. N.; Aschi, M.; Schwarz, H.; Koch, W. Theor Chem Accts 1998, 99, 95.
- 29 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, Jr.T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03 (Revision E.01); Gaussian, Inc.: Wallingford, CT, 2004.
- 30 Gracia, L.; Sambrano, L. R.; Safont, V. S.; Calatayud, M.; Beltrán, A.; Andrés, J. J Phys Chem A 2003, 107, 3107.
- 31 Gracia, L.; Andrés, J.; Safont, V. S.; Beltrán, A. Organometallics 2004, 23, 730.
- 32
Minyaev, R. M.
Russ Chem Rev
1994,
63,
883.
10.1070/RC1994v063n11ABEH000124 Google Scholar
- 33 Starikov, A. G.; Minyaev, R. M.; Minkin, V. I. Chem Phys Lett 2008, 459, 27.
- 34 Starikov, A. G.; Minyaev, R. M.; Minkin, V. I. J Mol Struct Theochem 2009, 895, 138.
- 35 Mebel, A. M.; Morokuma, K.; Lin, M. C. J Phys Chem 1995, 103, 7414.
- 36 Blagojevic, V.; Koyanagi, G. K.; Lavrov, V. V.; Orlova, G.; Bohme, D. K. Chem Phys Lett 2004, 389, 303.
- 37 Schröer, D.; Shaik, S.; Schwarz, H. Acc Chem Res 2000, 33, 139.
- 38
Ross, R. B.;
Christiansen, R. A.
Adv Quantum Chem
1988,
19,
139.
10.1016/S0065-3276(08)60615-2 Google Scholar
- 39 Danovich, D.; Shaik, S. J Am Chem Soc 1997, 119, 1773.
- 40 Koseki, S.; Schmidt, M. W.; Gordon, M. S. J Phys Chem 1992, 96, 10768.
- 41 Koseki, S.; Schmidt, M. W.; Gordon, M. S. J Phys Chem 1995, 99, 12764.
- 42 Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. J.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. J Comput Chem 1993, 14, 1347.
- 43 Granovsky, A. A. PC GAMESS, Available at: http://classic. chem.msu.su/gran/gamess/index.html.