Theoretical AM1 studies of inclusion complexes of heptakis(2-O-hydroxypropyl)-β-cyclodextrins with alkylated phenols
Corresponding Author
Ming-Ju Huang
Department of Chemistry, Computational Center for Molecular Structure and Interactions, Jackson State University, P.O. Box 17910, 1400 J. R. Lynch Street, Jackson, Mississippi 39217, USA
Department of Chemistry, Computational Center for Molecular Structure and Interactions, Jackson State University, P.O. Box 17910, 1400 J. R. Lynch Street, Jackson, Mississippi 39217, USASearch for more papers by this authorManyin Yi
Department of Chemistry, Computational Center for Molecular Structure and Interactions, Jackson State University, P.O. Box 17910, 1400 J. R. Lynch Street, Jackson, Mississippi 39217, USA
Search for more papers by this authorCorresponding Author
Ming-Ju Huang
Department of Chemistry, Computational Center for Molecular Structure and Interactions, Jackson State University, P.O. Box 17910, 1400 J. R. Lynch Street, Jackson, Mississippi 39217, USA
Department of Chemistry, Computational Center for Molecular Structure and Interactions, Jackson State University, P.O. Box 17910, 1400 J. R. Lynch Street, Jackson, Mississippi 39217, USASearch for more papers by this authorManyin Yi
Department of Chemistry, Computational Center for Molecular Structure and Interactions, Jackson State University, P.O. Box 17910, 1400 J. R. Lynch Street, Jackson, Mississippi 39217, USA
Search for more papers by this authorAbstract
Semiempirical Austin model I (AM1) calculations have been performed on a family of inclusion complexes of heptakis(2-O-hydroxypropyl)-β-cyclodextrin isomers derived from the 2-hydroxyl position (2HPβCD) and from the 6-hydroxyl position (6HPβCD) with alkylated phenol derivatives. From the stabilization energies and hydrogen bonding studies of the inclusion complexes of 2HPβCD and 6HPβCD with substituted phenols in head-first and tail-first positions, we found that the main driving forces for the formation of the inclusion complexes are from the van der Waals interactions. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2004
REFERENCES
- 1 Pitha, J.; Milecki, J.; Fales, H.; Pannell, L.; Uekama, K. Int J Pharm 1986, 29, 73.
- 2 Yoshida, A.; Arima, H.; Uekama, K.; Pitha, J.; Int J Pharm 1988, 46, 217.
- 3 Muller, B.; Brauns, U. Int J Pharm 1985, 26, 77.
- 4 Brewster, M. E.; Braunstein, A. J.; Bartruff, M. S. M.; Kibbey, C.; Huang, M.-J.; Pop, E.; Border, N. S. Supramol Chem 1994, 4, 69.
- 5 Van Etten, R. L.; Sebastian, J. F.; Clowes G. A.; Bender, M. L. J Am Chem Soc 1967, 89, 3242.
- 6 Cramer, F. Angew Chem 1956, 68, 115.
- 7 Nishijo, J.; Nagai, M. J Pharm Sci 1991, 80, 58.
- 8 Cohen, J.; Lach, J. L. J Pharm Sci 1963, 52, 132.
- 9 Jones, S. P.; Grant, D. J. W.; Hadgraft, J.; Parr, G. D. Acta Pharm Technol 1984, 30, 213.
- 10 Tong, W.-Q.; Lach, J. L.; Chin, T.-F.; Guillory, J. K. Pharm Res 1991, 8, 951.
- 11 Tabushi, I.; Kiyosuke, Y.-O.; Sugiomoto, T.; Yamamura, K. J Am Chem Soc 1978, 100, 916.
- 12 Orstan, A.; Ross, J. B. A. J Phys Chem 1987, 91, 2735.
- 13 Amato, M. E.; Djedaïni, F.; Pappalardo, G. C.; Perly, B.; Scarlata, G. J Pharm Sci 1992, 81, 1157–1161.
- 14 Kostense, A. S.; van Helden, S. P.; Janssen, L. H. M. J Comput Aided Mol Des 1991, 5, 525–543.
- 15 Tabushi, I.; Kiyosuke, Y.-O.; Sugimoto, U.; Yamamura, K. J Am Chem Soc 1978, 100, 916–919.
- 16 Matsui, Y. Bull Chem Soc Jpn 1982, 55, 1246.
- 17 Armstrong, D. W.; Ward, T. J.; Armstrong, R. D.; Beesley, T. E. Science 1986, 232, 1132.
- 18 Tabushi, I.; Mizutani, T. Tetrahedron, 1987, 43, 1439–1447.
- 19 Menger, F. M.; Sherrod, M. J. J Am Chem Soc 1988, 110, 8606.
- 20 Thiem, H.-J.; Brandl, M.; Breslow, R. J Am Chem Soc 1988, 110, 8612.
- 21 Venanzi, C. A.; Canzius, P. M.; Zhang, Z.; Bunce, J. D. J Comput Chem 1989, 10, 1038–1052.
- 22 Sherrod, M. J. Carbohydr Res 1989, 192, 17–32.
- 23 deNamor, A. F. D.; Traboulssi, R.; Lewis, D. F. V. J Chem Soc Chem Commun 1990, 10, 751.
- 24 Ohashi, M.; Kasatani, K.; Shinohara, H.; Sato, H. J Am Chem Soc 1990, 112, 5824.
- 25 Lipkowitz, K. B. J Org Chem 1991, 56, 6357–6367.
- 26 van Helden, S. P.; van Eijck, B. P.; Janssen, L. H. M. J Biomol Struct Dyn 1992, 9, 1269–1283.
- 27 Koehler, J. E. H.; Saenger, W.; van Gunsteren, W. F. J Mol Biol 1988, 203, 241.
- 28 Koehler, J. E. H.; Saenger, W.; van Gunsteren, W. F. Eur Biophys J 1987, 15, 197.
- 29 Koehler, J. E. H.; Saenger, W.; van Gunsteren, W. F. Eur Biophys J 1987, 15, 211.
- 30 Prabhakaran, M.; Harvey, S. C. Biopolymers 1987, 26, 1087–1096.
- 31 Koehler, J. E. H.; Saenger, W.; van Gunsteren, W. F. J Biomol Struct Dyn 1988, 6, 181.
- 32 Koehler, J. E. H.; Saenger, W.; van Gunsteren, W. F. Eur Biophys J 1988, 16, 153.
- 33 Kitagawa, M.; Hoshi, H.; Sakurai, M.; Inoue, Y.; Chujo, R. Carbohydr Res 1987, 163, C1.
- 34 Sakurai, M.; Kitagawa, M.; Hoshi, H. Chem Lett 1988, 5, 895–898.
- 35 Kitagawa, M.; Hoshi, H.; Sakurai, M.; Inoue, Y.; Chujo, R. Bull Chem Soc Jpn 1988, 61, 4225–4229.
- 36 Sakurai, M.; Kitagawa, M.; Hoshi, H.; Inoue, Y.; Chujo, R. Bull Chem Soc Jpn 1989, 62, 2067.
- 37 Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J Am Chem Soc 1985, 107, 3902.
- 38 Bodor, N. S.; Huang, M.-J.; Watts, J. D. J Pharm Sci 1995, 84, 330.
- 39 Bodor, N.; Huang, M.-J.; Watts, J. D. “ Theoretical AM1 Studies of Inclusion Complexes of α- and β-Cyclodextrins with Methylated Benzoic Acids and Phenol, and γ-Cyclodextrin with Buckminsterfullerene,” Proceeding of the Eighth International Symposium on Cyclodextrins, Budapest, Hungary, 1996, 209–214; and Bodor, N.; Huang, M.-J.; Watts, J. D. J Incl Phenom Mol Rec Chem 1996, 25, 97.
- 40 Huang, M.-J.; Watts, J. D.; Bodor, N. Int J Quantum Chem 1997, 64, 711.
- 41 Huang, M.-J.; Watts, J. D.; Bodor, N. Int J Quantum Chem 1997, 64, 1135.
- 42 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P.Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revisions A.6 and A.7; Gaussian: Pittsburgh, 1998.
- 43 Betzel, C.; Saenger, W.; Hingerty, B. E.; Brown, G. M. J Am Chem Soc 1984, 106, 7545–7557.
- 44 Bodor, N.; Gabanyi, Z.; Wong, C.-K. J Am Chem Soc 1989, 111, 3783.
- 45 Bodor, N.; Huang, M.-J. J Pharm Sci 1992, 81, 272.