Multicolor Invisible Patterns Encrypted in Double-Inverse-Opal Films Based on Thermally Induced Structural Deformation
Changtong Zhou
State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorYong Qi
State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorCorresponding Author
Shufen Zhang
State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorWenbin Niu
State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorSuli Wu
State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorWei Ma
State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorBingtao Tang
State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorChangtong Zhou
State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorYong Qi
State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorCorresponding Author
Shufen Zhang
State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorWenbin Niu
State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorSuli Wu
State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorWei Ma
State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorBingtao Tang
State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorAbstract
The integration of invisible photonic patterns into specific micro/nanostructures provides a new way to construct stimuli-responsive optical anti-counterfeiting devices. Herein, an innovative strategy for constructing highly invisible patterns in the solvent-responsive double-inverse-opal (DIO) films by the thermal treatment is proposed. The masked area retains the responsive DIO structure, but the exposed area loses the periodic ordered array, which results in different optical responses of the pattern and background to the solvent. Due to the special structure, the scattering effect derived from the randomly distributed polystyrene microspheres within the pores of the inverse-opal backbone in both the masked area and the exposed area makes the resultant film sample present a pale color, and the encrypted pattern is highly invisible in normal conditions. Interestingly, the hidden pattern can be quickly revealed by ethanol response, showing a large color contrast. Furthermore, reversible bilayer DIO films with multiple hidden patterns for advanced anti-counterfeiting materials are prepared. Importantly, the as-prepared film sample can reveal different patterns on the front and back sides in decryption, and simultaneously the overlapping part of the patterns can achieve color mixing based on the bilayer structure, thereby showing great potential in information encryption and anti-counterfeiting fields.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
pssr202200016-sup-0001-SuppData-S1.zip3.5 MB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Z. Cai, Z. Li, S. Ravaine, M. He, Y. Song, Y. Yin, H. Zheng, J. Teng, A. Zhang, Chem. Soc. Rev. 2021, 50, 5898.
- 2 R. Xiong, J. Luan, S. Kang, C. Ye, S. Singamaneni, V. Tsukruk, Chem. Soc. Rev. 2020, 49, 983.
- 3 P. Wu, J. Wang, L. Jiang, Mater. Horiz. 2020, 7, 338.
- 4
J. Hou, H. Zhang, Q. Yang, M. Li, Y. Song, L. Jiang, Angew. Chem., Int. Ed. 2014, 53, 1.
10.1002/anie.201310509 Google Scholar
- 5 L. Shang, W. Zhang, K. Xu, Y. Zhao, Mater. Horiz. 2019, 6, 945.
- 6 J. Ge, Y. Yin, Angew. Chem., Int. Ed. 2011, 50, 1492.
- 7 Y. Takeoka, J. Mater. Chem. C 2013, 1, 6059.
- 8 K. Phillips, N. Vogel, Y. Hu, M. Kolle, C. Perry, J. Aizenberg, Chem. Mater. 2014, 26, 1622.
- 9 M. Gallei, Macromol. Rapid Commun. 2018, 39, 1700648.
- 10 J. Cui, W. Zhu, N. Gao, J. Li, H. Yang, Y. Jiang, P. Seidel, B. Ravoo, G. Li, Angew. Chem. Int. Ed. 2014, 53, 3844.
- 11 C. G. Schäfer, T. Winter, S. Heidt, C. Dietz, T. Ding, J. J. Baumberg, M. Gallei, J. Mater. Chem. C 2015, 3, 2204.
- 12 B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage, J. Aizenberg, PNAS, 2010, 107, 10354.
- 13 G. I. N. Waterhouse, M. R. Waterland, Polyhedron 2007, 26, 356.
- 14 J. Liu, J. Wang, T. Ikeda, L. Jiang, Adv. Funct. Mater. 2021, 31, 2105728.
- 15 M. Quan, B. Yang, J. Wang, H. Yu, X. Gao, ACS Appl. Mater. Interfaces 2018, 10, 4243.
- 16 F. Liu, S. Zhang, Y. Meng, B. Tang, Small 2020, 16, 2002319.
- 17 Y. Qi, W. Niu, S. Zhang, S. Wu, L. Chu, W. Ma, B. Tang, Adv. Funct. Mater. 2019, 29, 1906799.
- 18 Y. Fang, Y. Ni, S. Leo, C. Taylor, V. Basile, P. Jiang, Nat. Commun. 2015, 6, 7416.
- 19 P. Wu, C. Wei, W. Yang, L. Lin, W. Pei, J. Wang, L. Jiang, ACS Appl. Mater. Interfaces 2021, 13, 41220.
- 20 Y. Liu, Q. Fan, G. Zhu, G. Shi, H. Ma, W. Li, T. Wu, J. Chen, Y. Yin, J. Guan, Mater. Horiz. 2021, 8, 2032.
- 21 X. Du, T. Li, L. Li, Z. Zhang, T. Wu, J. Mater. Chem. C 2015, 3, 3542.
- 22 Y. Meng, J. Qiu, S. Wu, B. Ju, S. Zhang, B. Tang, ACS Appl. Mater. Interfaces 2018, 10, 38459.
- 23 S. Wu, T. Liu, B. Tang, L. Li, S. Zhang, ACS Appl. Mater. Interfaces 2019, 11, 27210.
- 24 K. Zhong, J. Li, L. Liu, S. V. Cleuvenbergen, K. Song, K. Clays, Adv. Mater. 2018, 30, 1707246.
- 25 Q. Fu, H. Zhu, J. Ge, Adv. Funct. Mater. 2018, 28, 1804628.
- 26 J. Zhang, Z. Zhu, Z. Yu, L. Ling, C.-F. Wang, S. Chen, Mater. Horiz. 2019, 6, 90.
- 27 Y. Li, Q. Fan, X. Wang, G. Liu, L. Chai, L. Zhou, J. Shao, Y. Yin, Adv. Funct. Mater. 2021, 31, 2170133.
- 28 G. Fu, X. Zhang, X. Chu, Y. Zhou, X. Peng, Y. Chen, M. Su, M. Kuang, Y. Song, Dyes Pigments 2021, 195, 109747.
- 29 J. Liao, C. Zhu, B. Gao, Z. Zhao, X. Liu, L. Tian, Y. Zeng, X. Zhou, Z. Xie, Z. Gu, Adv. Funct. Mater. 2019, 29, 1902954.
- 30 J. H. Kim, G. H. Lee, J. B. Kim, S. Kim, Adv. Funct. Mater. 2020, 30, 2001318.
- 31 I. B. Burgess, L. Mishchenko, B. D. Hatton, M. Kolle, M. Lončar, J. Aizenberg, J. Am. Chem. Soc. 2011, 133, 12430.
- 32 X. Wu, R. Hong, J. Meng, R. Cheng, Z. Zhu, G. Wu, Q. Li, C.-F. Wang, S. Chen, Angew. Chem., Int. Ed. 2019, 58, 13556.
- 33 X. Lai, Q. Ren, F. Vogelbacher, W. Sha, X. Hou, X. Yao, Y. Song, M. Li, Adv. Mater. 2022, 34, 2107243.
- 34 A. Larin, L. Dvoretckaia, A. Mozharov, I. Mukhin, A. Cherepakhin, I. Shishkin, E. Ageev, D. Zuev, Adv. Mater. 2021, 33, 2005886.
- 35 Y. Liu, S. Liang, C. Yuan, A. Best, M. Kappl, K. Koynov, H. Butt, S. Wu, Adv. Funct. Mater. 2021, 31, 2103908.
- 36
F. Bian, L. Sun, H. Chen, Y. Wang, L. Wang, L. Shang, Y. Zhao, Adv. Sci. 2022, 2105278.
10.1002/advs.202105278 Google Scholar
- 37 S. Wu, B. Tang, X. Su, S. Zhang, J. Phys. Chem. Lett. 2017, 8, 2835.
- 38 G. Chen, W. Hong, Adv. Opt. Mater. 2020, 8, 2000984.
- 39 Z. Chen, Y. Yu, J. Guo, L. Sun, Y. Zhao, Adv. Funct. Mater. 2020, 31, 2007527.
- 40 G. H. Lee, S. H. Han, J. B. Kim, J. H. Kim, J. M. Lee, S. Kim, Chem. Mater. 2019, 31, 8154.
- 41 Z. Li, Y. Yin, Adv. Mater. 2019, 31, 1807061.
- 42 C. Zhou, Y. Qi, S. Zhang, W. Niu, S. Wu, W. Ma, B. Tang, ACS Appl. Mater. Interfaces 2021, 13, 26384.
- 43 Y. Qi, L. Chu, W. Niu, B. Tang, S. Wu, W. Ma, S. Zhang, Adv. Funct. Mater. 2019, 29, 1903743.
- 44 C. Zhou, Y. Qi, S. Zhang, W. Niu, S. Wu, W. Ma, B. Tang, Langmuir 2020, 36, 1379.
- 45 J. Zhang, S. Yang, Y. Tian, C.-F. Wang, S. Chen, Chem. Commun. 2015, 51, 10528.
- 46 Y. Hu, D. Yang, S. Huang, Adv. Opt. Mater. 2020, 8, 1901541.
- 47 Q. Li, N. Qi, Y. Peng, Y. Zhang, L. Shi, X. Zhang, Y. Lai, K. Wei, I. S. Kim, K. Q. Zhang, RSC Adv. 2017, 7, 17889.
- 48 R. Xuan, J. Ge, J. Mater. Chem. 2012, 22, 367.
- 49 J. Choi, M. Hua, S. Y. Lee, W. Jo, C. Y. Lo, S. H. Kim, H. T. Kim, X. He, Adv. Opt. Mater. 2020, 8, 1901259.
- 50 X. He, Y. Gu, B. Yu, Z. Liu, K. Zhu, N. Wu, X. Zhao, Y. Wei, J. Zhou, Y. Song, J. Mater. Chem. C 2019, 7, 14069.
- 51 K. Chen, Y. Zhang, J. Ge, ACS Appl. Mater. Interfaces 2019, 11, 45256.
- 52 F. Huang, Y. Weng, Y. Lin, X. Zhang, Y. Wang, S. Chen, ACS Appl. Mater. Interfaces 2021, 13, 42276.
- 53 D. Yang, C. Ouyang, Y. Zhang, D. Ma, S. Huang, Adv. Mater. Interfaces 2021, 8, 2001905.
- 54 X. Xin, Z. Yang, Q. Yu, D. Shi, W. Dong, H. Zhang, M. Chen, Adv. Mater. Interfaces 2021, 8, 2100814.
- 55 W. Hong, H. Li, X. Hu, B. Zhao, F. Zhang, D. Zhang, Chem. Commun. 2012, 48, 4609.
- 56 W. Hong, H. Li, X. Hu, B. Zhao, F. Zhang, D. Zhang, Z. Xu, Chem. Commun. 2013, 49, 728.