Synthesis, Crystal Structure, and Physical Properties of BaSnS2
Wilarachchige D. C. B. Gunatilleke
Department of Physics, University of South Florida, Tampa, FL, 33620 USA
Search for more papers by this authorAndrew F. May
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 USA
Search for more papers by this authorAngela R. Hight Walker
Nanoscale Device Characterization Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899 USA
Search for more papers by this authorAdam J. Biacchi
Nanoscale Device Characterization Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899 USA
Search for more papers by this authorCorresponding Author
George S. Nolas
Department of Physics, University of South Florida, Tampa, FL, 33620 USA
Search for more papers by this authorWilarachchige D. C. B. Gunatilleke
Department of Physics, University of South Florida, Tampa, FL, 33620 USA
Search for more papers by this authorAndrew F. May
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 USA
Search for more papers by this authorAngela R. Hight Walker
Nanoscale Device Characterization Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899 USA
Search for more papers by this authorAdam J. Biacchi
Nanoscale Device Characterization Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899 USA
Search for more papers by this authorCorresponding Author
George S. Nolas
Department of Physics, University of South Florida, Tampa, FL, 33620 USA
Search for more papers by this authorAbstract
Phase-pure BaSnS2, with space group P21/c, is synthesized, and the structural and physical properties are investigated. Thermal properties and optical measurements are reported for the first time. The Debye temperature and Sommerfeld coefficient are obtained from temperature-dependent heat capacity measurements, the latter indicating that BaSnS2 is an electrical insulator. A direct bandgap of 2.4 eV is obtained from diffuse reflectance and photoluminescence spectroscopy. The findings herein lay the foundation for understanding the physical properties of this material and are part of a continuing effort to investigate previously unexplored ternary chalcogenides.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1I. Chung, M. G. Kanatzidis, Chem. Mater. 2016, 26, 849.
- 2G. S. Nolas, J. Poon, M. G. Kanazidis, MRS Bull. 2006, 31, 199.
- 3C. Han, Q. Sun, Z. Li, S. X. Dou, Adv. Energy Mater. 2016, 6, 1600498.
- 4O. Fischer, Solid-State Science, Springer, Heidelberg 1990.
- 5R. V. Gamernyk, Y. P. Gnatenko, P. M. Bukivskij, P. A. Skubenko, V. Y. Slivka, J. Phys.: Condens. Matter 2006, 18, 5323.
- 6D. Aldakov, A. Lefrancois, P. Reiss, J. Mater. Chem. C 2013, 1, 3756.
- 7G. R. Chen, C. H. Li, C. Y. Yu, M. F. Wang, C. S. Lee, Inorg. Chem. 2020, 59, 11207.
- 8F.-J. Fan, L. Wu, S. H. Yu, Energy Environ. Sci. 2014, 7, 190.
- 9Y. Dong, A. R. Khabibullin, K. Wei, J. R. Salvador, G. S. Nolas, L. M. Woods, Chem. Phys. Chem. 2015, 16, 3264.
- 10G. S. Nolas, S. M. Hassan, Y. Dong, J. Martin, J. Solid State Chem. 2016, 242, 50.
- 11Z. Guo, Z. Liu, J. Deng, J. Lin, Z. Zhang, X. Han, F. Sun, W. Yuan, J. Alloys Compd. 2021, 160820.
- 12W. Shi, A. R. Khabibullin, D. Hobbis, G. S. Nolas, L. M. Woods, J. Appl. Phys. 2019, 125, 155101.
- 13Y. Dong, H. Wang, G. S. Nolas, Inorg. Chem. 2013, 52, 14364.
- 14D.-J. Xue, B. Yang, Z.-K. Yuan, G. Wang, X. Liu, Y. Zhou, L. Hu, D. Pan, S. Chen, J. Tang, Adv. Energy Mater. 2015, 5, 1501203.
- 15H. Lei, J. Chen, Z. Tan, G. Fang, Solar RRL 2019, 3, 1900026.
- 16M. R. Gao, Y. F. Xu, J. Jiang, S. H. Yu, Chem. Soc. Rev. 2013, 42, 2986.
- 17Y. Dong, H. Wang, G. S. Nolas, Phys. Status Solidi RRL 2014, 8, 61.
- 18W. G. Zeier, A. LaLonde, Z. M. Gibbs, C. P. Heinrich, M. Panthöfer, G. J. Snyder, W. Tremel, J. Am. Chem. Soc. 2012, 134, 7147.
- 19G. S. Nolas, H. Poddig, W. Shi, L. M. Woods, J. Martin, H. Wang, J. Solid State Chem. 2021, 297, 122058.
- 20K. Wei, A. R. Khabibullin, T. Stedman, L. M. Woods, G. S. Nolas, J. Appl. Phys. 2017, 122, 105109.
- 21K. Wei, G. S. Nolas, ACS Appl. Mater. Interfaces 2015, 7, 9752.
- 22R. Woods-Robinson, Y. Han, H. Zhang, T. Ablekim, I. Khan, K. A. Persson, A. Zakutayev, Chem. Rev. 2020, 120, 4007.
- 23M. Ibáñez, R. Zamani, A. LaLonde, D. Cadavid, W. Li, A. Shavel, J. Arbiol, J. R. Morante, S. Gorsse, G. J. Snyder, A. Cabot, J. Am. Chem. Soc. 2012, 134, 4060.
- 24C. Zhou, C. Dun, K. Wang, X. Zhang, Z. Shi, G. Liu, C. A. Hewitt, G. Qiao, D. L. Carroll, Nano Energy 2016, 30, 709.
- 25R. Gupta, N. Kumar, P. Kaur, C. Bera, Phys. Chem. Chem. Phys. 2020, 22, 18989.
- 26A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am.Chem. Soc. 2009, 131, 6050.
- 27B. V. Lotsch, Angew. Chem., Int. Ed. 2014, 53, 635.
- 28N.-G. Park, J. Phys. Chem. Lett. 2013, 4, 2423.
- 29H. J. Snaith, J. Phys. Chem. Lett. 2013, 4, 3623.
- 30H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Science 2014, 345, 542.
- 31W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, A. D. Mohite, Science 2015, 347, 522.
- 32A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, H. Han, Science 2014, 345, 295.
- 33F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, M. G. Kanatzidis, Nat. Photonics 2014, 8, 489.
- 34J. E. Iglesias, H. Steinfink, Acta. Cryst. B 1973, 29, 1480.
- 35S. Del Bucchia, J. C. Jumas, M. Maurin, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1980, 36, 2935.
10.1107/S0567740880010564 Google Scholar
- 36S. Hao, L.-D. Zhao, C.-Q. Chen, V. P. Dravid, M. G. Kanatzidis, C. M. Wolverton, J. Am. Chem. Soc. 2014, 136, 1628.
- 37Y. Li, L. Wang, Y. Qiao, Y. Gan, D. J. Singh, Phys. Rev. Mater. 2020, 4, 055004.
- 38M. Hervieu, G. Perez, P. Hagenmuller, Bull. Soc. Chim. Fr. 1967, 6, 2189.
- 39H. Lin, H. Chen, Y. J. Zheng, Y. K. Chen, J. S. Yu, L. M. Wu, Chem. Commun. 2017, 53, 2590.
- 40Z. Z. Luo, C. S. Lin, W. D. Cheng, H. Zhang, W. L. Zhang, Z. Z. He, Inorg. Chem. 2013, 52, 273.
- 41C. Kittel, Introduction to Solid State Physics, John Wiley & Sons, New York 1976.
- 42W. Lai, Y. Wang, D. T. Morelli, X. Lu, Adv. Funct. Mater. 2015, 25, 3648.
- 43M. D. Nielsen, V. Ozolins, J. P. Heremans, Energy Environ. 2013, 6, 570.
- 44D. Hobbis, H. Wang, J. Martin, G. S. Nolas, Phys. Status Solidi–RRL 2020, 14, 2000166.
- 45Y. Dong, A. R. Khabibullin, K. Wei, J. R. Salvador, G. S. Nolas, L. M. Woods, ChemPhysChem 2015, 16, 3264.
- 46A. R. Khabibullin, K. Wei, T. D. Huan, G. S. Nolas, L. M. Woods, ChemPhysChem 2018, 19, 2635.
- 47P. Makuła, M. Pacia, W. Macyk, J. Phys. Chem. Lett. 2018, 9, 6814.
- 48B. H. Toby, R. B. Von Dreele, J. Appl. Crystallogr. 2013, 46, 544.
- 49J. P. Cline, M. D. Vaudin, J. E. Blended, C. A. Handwerker, R. Jiggetts, K. J. Bowman, N. Medendorp, Adv. X-ray Anal. 1993, 37, 473.
- 50M. M. Seabaugh, M. D. Vaudin, J. P. Cline, G. L. Messing, J. Am. Ceram. Soc. 2000, 83, 2049.
- 51W. A. Dollase, J. Appl. Crystallog. 1986, 19, 267.