Enhanced Magnetic Component in Synthetic Goethite (α-FeOOH) and its Relation with Morphological and Structural Characteristics
Corresponding Author
Daniel F. Valezi
Laboratory of Electron Paramagnetic Resonance, Physics Department, State University of Londrina (UEL), Londrina, PR 86.057-970, Brazil
Search for more papers by this authorJoão P. T. Baú
Laboratory of Prebiotic Chemistry, Chemistry Department, State University of Londrina (UEL), Londrina, PR 86.057-970, Brazil
Search for more papers by this authorDimas A. M. Zaia
Laboratory of Prebiotic Chemistry, Chemistry Department, State University of Londrina (UEL), Londrina, PR 86.057-970, Brazil
Search for more papers by this authorAntônio C. S. Costa
Laboratory of Chemistry and Soils Mineralogy, Agronomy Department, State University of Maringá (UEM), Maringá, PR 87020-900, Brazil
Search for more papers by this authorAlexandre Urbano
Laboratory of Thin Films and Materials, Physics Department, State University of Londrina (UEL), Londrina, PR 86.057-970, Brazil
Search for more papers by this authorLilian F. S. Tupan
Group of Special Materials, Physics Department, State University of Maringá (UEM), Maringá, PR 87020-900, Brazil
Search for more papers by this authorAndrea Paesano Jr.
Group of Special Materials, Physics Department, State University of Maringá (UEM), Maringá, PR 87020-900, Brazil
Search for more papers by this authorMarilene T. Piccinato
Physics Department, Technological Federal University of Paraná (UTFPR), Londrina, PR 86036-370, Brazil
Search for more papers by this authorEduardo Di Mauro
Laboratory of Electron Paramagnetic Resonance, Physics Department, State University of Londrina (UEL), Londrina, PR 86.057-970, Brazil
Search for more papers by this authorCorresponding Author
Daniel F. Valezi
Laboratory of Electron Paramagnetic Resonance, Physics Department, State University of Londrina (UEL), Londrina, PR 86.057-970, Brazil
Search for more papers by this authorJoão P. T. Baú
Laboratory of Prebiotic Chemistry, Chemistry Department, State University of Londrina (UEL), Londrina, PR 86.057-970, Brazil
Search for more papers by this authorDimas A. M. Zaia
Laboratory of Prebiotic Chemistry, Chemistry Department, State University of Londrina (UEL), Londrina, PR 86.057-970, Brazil
Search for more papers by this authorAntônio C. S. Costa
Laboratory of Chemistry and Soils Mineralogy, Agronomy Department, State University of Maringá (UEM), Maringá, PR 87020-900, Brazil
Search for more papers by this authorAlexandre Urbano
Laboratory of Thin Films and Materials, Physics Department, State University of Londrina (UEL), Londrina, PR 86.057-970, Brazil
Search for more papers by this authorLilian F. S. Tupan
Group of Special Materials, Physics Department, State University of Maringá (UEM), Maringá, PR 87020-900, Brazil
Search for more papers by this authorAndrea Paesano Jr.
Group of Special Materials, Physics Department, State University of Maringá (UEM), Maringá, PR 87020-900, Brazil
Search for more papers by this authorMarilene T. Piccinato
Physics Department, Technological Federal University of Paraná (UTFPR), Londrina, PR 86036-370, Brazil
Search for more papers by this authorEduardo Di Mauro
Laboratory of Electron Paramagnetic Resonance, Physics Department, State University of Londrina (UEL), Londrina, PR 86.057-970, Brazil
Search for more papers by this authorAbstract
Goethite (α-FeOOH) is by definition an antiferromagnetic (AFM) material. In the present work an investigation of the magnetic properties of goethite is performed, studying the magnetic component of this material in different samples and relating these properties with its structural and morphological characteristics. Samples are synthetized in two distinct ways in order to generate solids with different degrees of structural defects and imperfections. Electron spin resonance (ESR) data show that the sample synthesized in a faster procedure, most susceptible to defects and imperfections (GC sample), shows an area under the ESR line ≈20 times higher than the sample set for a lower incidence of defects (GD sample). Experiments with heat-treated samples at 150 °C show a reduction in the number of spins which contributed to ESR signal for the GC sample. Considering data of thermogravimetry (TGA), X-ray diffraction (XRD), and Mössbauer spectroscopy, the differences observed in ESR analysis are attributed to a magnetic mismatch in the AFM structure caused by the incidence of local defects, more common in GC sample. Results of heat-treated samples are associated to an increase in the exchange interaction between grains, which reduces the number of mismatched spins and favors the AFM arrangement.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1 U. Schwertmann, R. M. Cornell, Iron Oxides in the Laboratory: Preparation and Characterization, 2nd ed., Wiley InterScience (Online service), Wiley-VCH, Weinheim 2003.
- 2 C. E. A. Carneiro, F. F. Ivashita, I. G. de Souza, C. M. D. de Souza, A. Paesano, A. C. S. da Costa, E. di Mauro, H. de Santana, C. T. B. V. Zaia, D. A. M. Zaia, Int. J. Astrobiol. 2013, 12, 149.
- 3
G. Klingelhöfer,
E. DeGrave,
R. V. Morris,
A. Van Alboom,
V. G. de Resende,
P. A. De Souza,
D. Rodionov,
C. Schröder,
D. W. Ming,
A. Yen,
Hyperfine Interact.
2005,
166, 549.
10.1007/s10751-006-9329-y Google Scholar
- 4 S. Bocquet, A. J. Hill, Phys. Chem. Miner. 1995, 22, 524.
- 5 D. W. Strangway, R. M. Honea, B. E. McMahon, E. E. Larson, Geophys. J. Int. 1968, 15, 345.
- 6 S. K. Banerjee, Earth Planet. Sci. Lett. 1970, 8, 197.
- 7 I. G. Hedley, Z. Geophys. 1971, 37, 409.
- 8 S. Mørup, M. Bo Madsen, J. Franck, J. Villadsen, C. J. W. Koch, J. Magn. Magn. Mater. 1983, 40, 163.
- 9 P. Rochette, G. Fillion, Geophys. Res. Lett. 1989, 16, 851.
- 10 Ö. Özdemir, D. J. Dunlop, Geophys. Res. Lett. 1996, 23, 921.
- 11
D. J. Dunlop,
O. Özdemir,
Rock Magnetism: Fundamentals and Frontiers.
Cambridge University Press,
Cambridge
1997.
10.1017/CBO9780511612794 Google Scholar
- 12 C. A. Barrero, J. D. Betancur, J. M. Greneche, G. F. Goya, T. S. Berquó, Geophys. J. Int. 2006, 164, 331.
- 13 Q. A. Pankhurst, L. F. Barquín, J. S. Lord, A. Amato, U. Zimmermann, Phys. Rev. B 2012, 85, 174437.
- 14 D. F. Valezi, M. T. Piccinato, P. C. W. Sarvezuk, F. F. Ivashita, A. Paesano, Jr., D. H. Varalda, D. H. Mosca, A. Urbano, C. L. B. Guedes, E. Di Mauro, Mater. Chem. Phys. 2016, 173, 179.
- 15 S. Bocquet, S. J. Kennedy, J. Magn. Magn. Mater. 1992, 109, 260.
- 16 S. Bocquet, R. J. Pollard, J. D. Cashion, Phys. Rev. B 1992, 46, 11657.
- 17 J. M. D. Coey, A. Barry, J. Brotto, H. Rakoto, S. Brennan, W. N. Mussel, A. Collomb, D. Fruchart, J. Phys.: Condens. Matter 1995, 7, 759.
- 18 U. Schwertmann, H. Fechter, R. M. Taylor, H. Stanjek, A lecture and demonstration for students on iron oxide formation, Proc. 10th Int. Clays Conf., Adelaide, Australia, July 1993, pp. 11–15.
- 19 R. A. Brand, Normos-90 Mössbauer fitting program package, User's Guide, Lab. Angew. Phys., University of Duisburg, Duisburg, Germany 1994.
- 20 D. E. Madsen, M. F. Hansen, C. B. Koch, S. Mørup, J. Phys.: Condens. Matter 2008, 20, 135215.
- 21
D. F. Valezi,
J. C. Spadotto,
L. G. Santos,
J. P. T. Bau,
C. E. A. Carneiro,
D. A. M. Zaia,
A. C. S. Costa,
I. G. Solorzano,
E. Di Mauro,
Microsc. Microanal.
2017,
23, 1922.
10.1017/S1431927617010273 Google Scholar
- 22 K. Maniammal, G. Madhu, V. Biju, Physica E, Low-Dimensional Syst. Nanostruct. 2017, 85, 214.
- 23 U. Schwertmann, Clays Clay Miner. 1985, 33, 369.
- 24 R. L. Frost, Z. Ding, H. D. Ruan, J. Therm. Anal. Calorim. 2003, 71, 783.
- 25 J. D. Betancur, C. A. Barrero, J. M. Greneche, G. F. Goya, J. Alloys Compd. 2004, 369, 247.
- 26 H. Liu, T. Chen, X. Zou, C. Qing, R. L. Frost, Thermochim. Acta 2013, 568, 115.
- 27 M. M. Ibrahim, G. Edwards, M. S. Seehra, B. Ganguly, G. P. Huffman, J. Appl. Phys. 1994, 75, 5873.
- 28 N. Guskos, G. J. Papadopoulos, V. Likodimos, S. Patapis, D. Yarmis, A. Przepiera, K. Przepiera, J. Majszczyk, J. Typek, M. Wabia, K. Aidinis, Z. Drazek, Mater. Res. Bull. 2002, 37, 1051.
- 29 C. Carbone, F. Di Benedetto, P. Marescotti, C. Sangregorio, L. Sorace, N. Lima, M. Romanelli, G. Lucchetti, C. Cipriani, Mineral. Petrol. 2005, 85, 19.
- 30 D. E. Madsen, L. Cervera-Gontard, T. Kasama, R. E. Dunin-Borkowski, C. B. Koch, M. F. Hansen, C. Frandsen, S. Mørup, J. Phys.: Condens. Matter 2009, 21, 016007.
- 31 S. Mørup, J. Magn. Magn. Mater. 1983, 37, 39.
- 32 E. de Grave, R. E. Vandenberghe, Hyperfine Interact. 1986, 28, 643.
- 33 E. Brok, C. Frandsen, D. E. Madsen, H. Jacobsen, J. O. Birk, K. Lefmann, J. Bendix, K. S. Pedersen, C. B. Boothroyd, A. A. Berhe, G. G. Simeoni, S. Mørup, J. Phys. D, Appl. Phys. 2014, 47, 365003.
- 34 C. Frandsen, D. E. Madsen, C. B. Boothroyd, S. Mørup, Croat. Chem. Acta 2015, 88, 481.
- 35 Y. Guyodo, A. Mostrom, R. Lee Penn, S. K. Banerjee, Geophys. Res. Lett. 2003, 30, n/a.
- 36 D. J. Burleson, R. L. Penn, Langmuir 2006, 22, 402.
- 37 R. Lee Penn, J. J. Erbs, D. M. Gulliver, J. Cryst. Growth 2006, 293, 1.
- 38 C. J. W. Koch, M. B. Madsen, S. Morup, G. Christiansen, L. Gerward, Clays Clay Miner. 1986, 34, 17.