Stability and Pressure Dependent Properties of Ternary Lithium Borides of Gold and Silver
Sezgin Aydin
Faculty of Sciences, Department of Physics, Gazi University, 06500 Teknikokullar, Ankara, Turkey
Search for more papers by this authorCorresponding Author
Mehmet Şimşek
Faculty of Sciences, Department of Physics, Gazi University, 06500 Teknikokullar, Ankara, Turkey
Search for more papers by this authorSezgin Aydin
Faculty of Sciences, Department of Physics, Gazi University, 06500 Teknikokullar, Ankara, Turkey
Search for more papers by this authorCorresponding Author
Mehmet Şimşek
Faculty of Sciences, Department of Physics, Gazi University, 06500 Teknikokullar, Ankara, Turkey
Search for more papers by this authorAbstract
The structural, electronic, and mechanical properties, and dynamic stabilities of LiAu3B and LiAg3B ternary borides, and those of related LixAu9B3 (x = 0, 1, 2) sub-structures have been investigated by density functional first-principles calculations. By using ultrasoft and norm-conserving pseudopotentials, it is presented that LiAu3B is thermodynamically, mechanically, and dynamically stable at the ambient conditions, while LiAg3B is mechanically stable only. Pressure-dependent properties of LiAu3B are also studied, and it is shown that the mechanical stability is maintained in the whole pressure range (0–50 GPa), but the dynamic stability diminishes at about 20 GPa. Due to the extraordinary deviation of the lattice parameters (a and c) in the range of 25–30 GPa and the dynamic instability, a pressure-induced phase transition may be expected. By comparing the structural, electronic and mechanical properties of LixAu9B3 (x = 0, 1, 2, and 3) structures, the effects of the Li-concentration on the physical properties of the structure are discussed.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
pssb201700666-sup-0001-SuppData-S1.pdf1.8 MB | Supporting Data. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 M. Fujimori, T. Nakata, T. Nakayama, E. Nishibori, K. Kimura, M. Takata, M. Sakata, Phys. Rev. Lett. 1999, 82, 4452.
- 2 B. Albert, H. Hillebrecht, Angew. Chem. Int. Ed. 2009, 48, 8640.
- 3 I. R. Shein, N. I. Medvedeva, A. L. Ivanovskii, Phys. Solid State 2001, 43, 2213.
- 4 T. Oguchi, J. Phys. Soc. Jpn. 2002, 71, 1495.
- 5 A. N. Kolmogorov, S. Curtarolo, Phys. Rev. B 2006, 74, 224507.
- 6 J. He, E. Wu, H. Wang, R. Liu, Y. J. Tian, Phys. Rev. Lett. 2005, 94, 015504.
- 7 G. Ning, R. L. Flemming, J. Appl. Crystallogr. 2005, 38, 757.
- 8 A. Zalkin, D. H. Templeton, J. Chem. Phys. 1950, 18, 391.
- 9 K. Shirai, Phys. Rev. B 1997, 55, 12235.
- 10 J. Beyk, J. P. Mannaerts, L. C. Feldman, B. A. Davidson, Appl. Phys. Lett. 1986, 49, 286.
- 11 R. C. Andrew, R. E. Mapasha, A. M. Ukpong, N. Chetty, Phys. Rev. B 2012, 85, 125428.
- 12 X. Wu, J. Dai, Y. Zhao, Z. Zhuo, J. Yang, X. C. Zeng, ACS Nano 2012, 6, 7443.
- 13 A. N. Kolmogorov, M. Calandra, S. Curtarolo, Phys. Rev. B 2008, 78, 094520.
- 14 H. Gou, N. Dubrovinskaia, E. Bykova, A. A. Tsirlin, D. Kasinathan, W. Schnelle, A. Richter, M. Merlini, M. Hanfland, A. M. Abakumov, D. Batuk, G. Van Tendeloo, Y. Nakajima, A. N. Kolmogorov, L. Dubrovinsky, Phys. Rev. Lett. 2013, 111, 157002.
- 15 U. Eibenstein, W. Jung, J. Solid State Chem. 1997, 133, 21.
- 16 R. Mirgel, J. Wung, J. Less-Common Met. 1988, 144, 87.
- 17 S. Aydin, M. Simsek, Phys. Status Solidi B 2012, 249, 1744.
- 18 E. Bauer, G. Hilscher, H. Michor, Ch. Paul, E. W. Scheidt, A. Gribanov, Yu. Seropegin, H. Noel, M. Sigrist, P. Rogl, Phys. Rev. Lett 2004, 92, 027003.
- 19 T. Takayama, K. Kuwano, D. Hirai, Y. Katsura, A. Yamamoto, H. Takagi, Phys. Rev. Lett. 2012, 108, 237001.
- 20 H. Chen, X. Xu, C. Cao, J. Dai, Phys. Rev. B 2012, 86, 125116.
- 21 J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Nature 2001, 410, 63.
- 22 D. A. Tompsett, Z. P. Yin, G. G. Lonzarich, W. E. Pickett, Phys. Rev. B 2010, 82, 235101.
- 23 S. Tsuchiya, T. Toshima, H. Nobukane, K. Inagaki, S. Tanda, Phys. Rev. B 2009, 80, 094502.
- 24 W. N. Lipscomb, J. Less-Common Met. 1981, 82, 1.
- 25
D. C. Johnston,
H. F. Braun, in
Superconductivity in Ternary Compounds II (Eds: M. B. Maple, O. Fischer),
Springer,
Heidelberg, New York
1982, pp. 11–56.
10.1007/978-1-4899-3768-1_2 Google Scholar
- 26 C. Buzea, T. Yamashita, Supercond. Sci. Technol. 2001, 14, R115.
- 27 Y. Zhao, S. Zeng, J. Ni, Phys. Rev. B 2016, 93, 014502.
- 28 M. I. Eremets, V. V. Struzhkin, H. K. Mao, R. J. Hemley, Science 2001, 293, 272.
- 29 A. Provino, S. Steinberg, V. Smetana, U. Paramanik, P. Manfrinetti, S. K. Dhar, A. V. Mudring, Cryst. Growth Des. 2016, 16, 5657.
- 30 S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, M. C. Payne, Z. Kristallogr. 2005, 220, 567.
- 31 B. G. Pfrommer, M. Cote, S. G. Louie, M. L. Cohen, J. Comput. Phys. 1997, 131, 133.
- 32 D. Vanderbilt, Phys. Rev. B 1990, 41, 7892.
- 33 J. S. Lin, A. Qteish, M. C. Payne, V. Heine, Phys. Rev. B 1993, 47, 4174.
- 34 J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 35 S. Q. Wu, Z. F. Hou, Z. Z. Zhu, Solid State Commun. 2007, 143, 425.
- 36 Z. J. Wu, E. J. Zhao, H. P. Xiang, X. F. Hao, X. J. Liu, J. Meng, Phys. Rev. B 2007, 76, 054115.
- 37 A. Simunek, J. Vackar, Phys. Rev. Lett. 2006, 96, 085501.
- 38 A. Simunek, Phys. Rev. B 2007, 75, 172108.
- 39 Y. Li, Y. Gao, B. Xiao, T. Min, Y. Yang, S. Ma, D. Yi, J. Alloys Compd. 2011, 509, 5242.
- 40 X. Zhang, Y. Wang, J. Lv, C. Zhu, Q. Li, M. Zhang, Q. Li, Y. Ma, J. Chem. Phys. 2013, 138, 114101.
- 41 W. Zhou, H. Wu, T. Yildirim, Phys. Rev. B 2007, 76, 184113.
- 42 W. B. Pearson, The Crystal Chemistry and Physics of Metals and Alloys, Wiley, New York 1972, p. 151, Table 4–4.
- 43 Y. Xu, M. Yamazaki, P. Villars, Jpn. J. Appl. Phys. 2011, 50, 11RH02.
- 44 S. J. Jenkins, J. Leszczynski (Eds.), Computational Material Science, Elsevier, San Diego 2004, p. 266.
- 45 D. H. Chung, W. R. Buessem, in Anisotropy in Single Crystal Refractory Compounds (Eds: F. W. Vahldiek, S. A. Mersol, Plenum, New York 1968, pp. 217.
- 46 P. Ravindran, L. Fast, P. A. Korzhavyi, B. Johansson, J. Wills, O. Eriksson, J. Appl. Phys. 1998, 84, 4891.
- 47 M. D. Segall, R. Shah, C. J. Pickard, M. C. Payne, Phys. Rev. B 1996, 54, 16317.