La1−xSrxMnO3 Nanoparticles for Magnetic Hyperthermia
Corresponding Author
Angel T. Apostolov
Faculty of Hydrotechnics, Department of Physics, University of Architecture, Civil Engineering and Geodesy, Hr. Smirnenski Blvd. 1, 1046 Sofia, Bulgaria
Search for more papers by this authorIliana N. Apostolova
Faculty of Forest Industry, University of Forestry, Kl. Ohridsky Blvd. 10, 1756 Sofia, Bulgaria
Search for more papers by this authorJulia M. Wesselinowa
Department of Physics, University of Sofia, J. Bouchier Blvd. 5, 1164 Sofia, Bulgaria
Search for more papers by this authorCorresponding Author
Angel T. Apostolov
Faculty of Hydrotechnics, Department of Physics, University of Architecture, Civil Engineering and Geodesy, Hr. Smirnenski Blvd. 1, 1046 Sofia, Bulgaria
Search for more papers by this authorIliana N. Apostolova
Faculty of Forest Industry, University of Forestry, Kl. Ohridsky Blvd. 10, 1756 Sofia, Bulgaria
Search for more papers by this authorJulia M. Wesselinowa
Department of Physics, University of Sofia, J. Bouchier Blvd. 5, 1164 Sofia, Bulgaria
Search for more papers by this authorAbstract
Using a modified Heisenberg model and a Green's function technique we have studied the influence of size d and concentration x of Sr dopants on the Curie temperature TC, saturation magnetization MS, coercivity HC and specific absorption rate (SAR) of single-domain La1−xSrxMnO3 nanoparticles. Their magnetic properties are explained based on the “magnetically death” surface layer and the competition between the ferromagnetic double-exchange and antiferromagnetic super-exchange interaction. We calculated the specific absorption rate which characterizes the efficiency of the absorption energy when the magnetic hyperthermia is applied as a therapeutic method for the treatment of tumors. A set of nanoparticles appropriate for in vivo and in vitro medical applications, such as magnetic hyperthermia and drug delivery to cancer cells, is determined. The established methodology and microscopic model are suitable to study the magnetic properties of low-dimensional systems (thin films and nanoparticles) such as La1−xAxMnO3 with A = Ca, Ag, Ba, Na for medical applications.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1 Q. A. Pankhurst, J. Connolly, S. K. Jones, J. Dobson, J. Phys. D: Appl. Phys. 2003, 36, R167.
- 2 G. F. Goya, V. Grazu, M. R. Ibarra, Curr. Nanosci. 2008, 4, 1.
- 3 R. Sharma, C. J. Chen, J. Nanopart. Res. 2009, 11, 671.
- 4 Z. Hedayatnasab, F. Abnisa, W. M. A. W. Daud, Mater. Design 2017, 123, 174.
- 5 B. Ghosh, V. Siruguri, A. K. Raychaudhuri, T. Chatterji, J. Phys.: Condens. Matter 2014, 26, 025603.
- 6 V. Markovich, G. Jung, I. Fita, D. Mogilyansky, X. Wu, A. Wisniewski, R. Puzniak, L. Titelman, L. Vradman, M. Herskowitz, G. Gordetsky, J. Magn. Magn. Mater. 2010, 322, 1311.
- 7 W. Uskokovic, A. Kosak, M. Drofenik, M. Drofenik, Int. J. Appl. Ceram. Technol. 2006, 3, 134.
- 8 N. K. Prasad, K. Rathinasamy, D. Panda, D. Bahadur, J. Biomed. Mater. Res. B 2007, 85, 409.
- 9 Z. F. Zi, Y. P. Sun, X. B. Zhu, Z. R. Yang, J. M. Dai, W. H. Song, J. Magn. Magn. Mater. 2009, 321, 2378.
- 10 K. McBride, J. Cook, S. Gray, S. Felton, L. Stella, D. Poulidi, Cryst. Eng. Comm. 2016, 18, 407.
- 11 S. Vasseur, E. Duguet, J. Portier, G. Goglio, S. Mornet, E. Hadova, K. Knizek, M. Marysko, P. Verveka, E. Pollert, J. Magn. Magn. Mater. 2006, 302, 315.
- 12 A. A. Kuznetsov, O. A. Shlyakhtin, N. A. Brusentsov, O. A. Kuznetsov, Eur. Cells Mater. 2002, 3, 75.
- 13 V. M. Kulkarni, D. Bodas, K. Paknikar, RSC Adv. 2015, 5, 60254.
- 14 O. Kaman, P. Veverka, Z. Jirak, M. Marysko, K. Knizek, M. Veverka, P. Kaspar, M. Burian, V. Sepelak, E. Pollert, J. Nanopart. Res. 2011, 13, 1237.
- 15 A. Rashid, S. Manzoor, J. Magn. Magn. Mater. 2016, 420, 232.
- 16 M. Soleymani, M. Edrissi, A. M. Alizadeh, J. Mater. Chem. B 2017, 5, 4705.
- 17 N. Das, P. Mondal, D. Bhattacharya, Phys. Rev. B 2006, 74, 014410.
- 18 P. P. Pedra, K. O. Moura, J. G. S. Duque, C. T. Meneses, Brazilian National Meeting on Condensed Matter Physics 2010, ID: 972.
- 19 A. Gaur, G. D. Varma, J. Phys.: Condens. Matter 2006, 18, 8837.
- 20 M. L. Moreira, J. M. Soares, W. M. de Azevedo, A. R. Rodrigues, F. L. A. Machado, J. H. de Araujo, Physica B 2006, 384, 51.
- 21 P. Mondal, D. Bhattacharya, A. Maity, O. Chakrabarti, A. K. M. Islam, M. Mukherjee, J. Appl. Phys. 2011, 109, 084327.
- 22 A. Rostamnejadi, H. Salamati, P. Kameli, 2009, arXiv:0907.2815.
- 23 A. E. Pantoja, H. J. Trodahl, R. G. Buckley, Y. Tomioka, Y. Tokura, J. Phys.: Condens. Matter 2001, 13, 3741.
- 24 V. M. Kulkarni, D. Bodas, D. Dhoble, V. Ghormade, K. Paknikar, Colloids Surf. B 2016, 145, 878.
- 25 O. V. Melnikov, O. Yu. Gorbenko, M. N. Markelova, A. R. Kaul, V. A. Atsarkin, V. V. Demidov, C. Soto, E. J. Roy, B. M. Odintsov, J. Biomed. Mater. Res. A 2008, 91, 1048.
- 26 O. A. Shlyakhtin, V. G. Leontiev, Y.-J. Oh, A. A. Kuznetsov, Smart Mater. Struct. 2007, 16, N35.
- 27 M. Ebrahimi, J. Magn. Magn. Mater. 2016, 416, 134.
- 28 A. Kargol, L. Malkinski, G. Caruntu, in: Advanced Magnetic Materials, (Ed.: L. Malkinski), InTech Publ, Riejeka, Croatia 2012.
- 29 G. H. Jaffari, T. Ekiert, K. M. Unruh, S. Ismat Shah, Mater. Sci. Eng. B 2012, 177, 935.
- 30 B. Mehdaoui, R. P. Tan, A. Meffre, J. Carrey, S. Lachaize, B. Chaudret, M. Respaud, Phys. Rev. B 2013, 87, 174419.
- 31 C. Dennis, A. Jackson, J. Borchers, R. Ivkov, A. Foreman, J. Lau, E. Goernitz, C. Gruettner, J. Appl. Phys. 2008, 103, 07A319.
- 32 C. Haase, U. Nowak, Phys. Rev. B 2012, 85, 045435.
- 33 A. Urtizberea, E. Natividad, A. Arizaga, M. Castro, A. Mediano, J. Phys. Chem. C 2010, 114, 4916.
- 34 D. Serantes, D. Baldomir, C. Martinez-Boubeta, K. Simeonidis, M. Angelakeris, E. Natividad, M. Castro, A. Mediano, D.-X. Chen, A. Sanchez, L. I. Balcells, B. Martínez, J. Appl. Phys. 2010, 108, 073918.
- 35 M. Levy, C. Wilhelm, J.-M. Siaugue, O. Horner, J.-C. Bacri, F. Gazeau, J. Phys.: Condens. Matter 2008, 20, 204133.
- 36 P. de la Presa, Y. Luengo, M. Multigner, R. Costo, M. P. Morales, G. Rivero, A. Hernando, J. Phys. Chem. C 2012, 116, 25602.
- 37
S. Jadhav,
D. Nikam,
V. M. Khot,
N. Thorat,
M. Phadatare,
R. S. Ningthoujam,
A. B. Salunkhe,
S. H. Pawar,
New J. Chem.
2017,
37, 3121.
10.1039/c3nj00554b Google Scholar
- 38 K. R. Bhayani, S. Arora, R. Rajagopal, H. Mamgain, R. Kaul-Ghanekar, D. C. Kundaliya, S. D. Kulkarni, R. Pasricha, S. D. Dhole, S. B. Ogale, K. M. Paknikar, S. N. Kale, Nanotechnology 2007, 18, 345101.
- 39 R. A. K. Pradhan, R. Bah, R. B. Konda, R. Mundle, H. Mustafa, O. Bamiduro, R. R. Rakhimov, J. Appl. Phys. 2008, 103, 07F704.
- 40 R. Y. Hong, J. H. Li, J. M. Qu, L. L. Chen, H. Z. Li, Chem. Eng. J. 2009, 150, 572.
- 41 R. Rajagopal, J. Mona, S. N. Kale, T. Bala, R. Pasricha, P. Poddar, M. Sastry, B. L. V. Prasad, D. C. Kundaliya, S. B. Ogale, Appl. Phys. Lett. 2006, 89, 023107.
- 42 I. N. Apostolova, J. M. Wesselinowa, Solid State Commun. 2009, 149, 986.
- 43 A. T. Apostolov, I. N. Apostolova, J. M. Wesselinowa, J. Appl. Phys. 2011, 109, 083939.
- 44 A. T. Apostolov, I. N. Apostolova, J. M. Wesselinowa, Eur. J. Phys. B 2013, 86, 483.
- 45 A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, Y. Tokura, Phys. Rev. B 1995, 51, 14103.
- 46 R. Epherre, C. Pepin, N. Pepin, E. Duquet, St. Mornet, E. Pollert, G. Goglio, J. Mater. Chem. 2011, 21, 14990.
- 47 R. Mahendiran, S. Tiwary, A. Raychaudhuri, T. Ramakrishnan, Phys. Rev. B 1996, 53, 3348.
- 48 C. Rao, R. Mahesh, A. Raychaudhuri, R. Mahendiran, J. Phys. Chem. Solids 1998, 59, 487.
- 49 C. Zener, Phys. Rev. 1951, 82, 403.
- 50
C. Rao,
B. Raveau,
Colossal Magnetoresistance, Charge Ordering and Related Properties of Manganese Oxides,
World Scientific,
Singapore
1998.
10.1142/3605 Google Scholar
- 51 M. Mochizuki, N. Furucawa, Phys. Rev. B 2009, 80, 134416.
- 52 E. Natividad, M. Castro, G. Goglio, I. Andreu, R. Epherre, E. Duguet, A. Mediano, Nanoscale 2012, 4, 3954.
- 53 P. Žvátora, M. Veverka, P. Veverka, K. Knížek, K. Závěta, E. Pollert, V. Král, G. Goglio, E. Duguet, O. Kaman, J. Solid State Chem. 2013, 204, 373.
- 54 A. Nosov, A. Pinkevich, V. Vasilev, E. Vladimirova, Phys. Met. Metallogr. 2008, 106, 34.
- 55 M. Paraskevopoulos, F. Maur, J. Hemberger, A. Laidi, R. Heichele, D. Maurer, U. Muller, A. Mukhin, A. Balbashov, J. Phys.: Condens. Matter 2000, 12, 3993.
- 56
Q. Wan,
K. Jin,
Q. Li,
Y. Feng,
C. Wang,
Ch. Ge,
M. He,
H. Li,
H. Guo,
H. Li,
Y. Yang,
G. Yang,
Phys. Mech. Astron.
2017,
60, 057711.
10.1007/s11433-017-9018-8 Google Scholar
- 57 S. Daengsakul, Ch. Mongkolkachit, Ch. Thomas, S. Siri, I. Thomas, V. Amornkitbamrung, S. Maensiri, Appl. Phys. A 2009, 96, 691.
- 58 A. Rostanejadi, M. Vencatesan, P. Kameli, H. Salamati, J. Coey, J. Magn. Magn. Mater. 2011, 323, 2214.
- 59 J. Coey, M. Viret, S. von Malnar, Adv. Phys. 1999, 48, 167.
- 60 M. Salmon, M. Jaime, Rev. Mod. Phys. 2001, 73, 583.
- 61 N. Zhang, W. Yang, W. Ding, D. Xing, Y. Du, Solid State Commun. 1999, 109, 537.
- 62 M. Itoh, T. Shimura, J. Yu, T. Hayashi, Y. Inaguma, Phys. Rev. Lett. 1995, 74, 5144.
- 63 R. Sanchez, J. Rivas, P. Vaqueiro, M. Lopez-Quintela, D. Caeiro, J. Magn. Magn. Mater. 2002, 247, 92.
- 64 . T. Sarkar, A. Raychaudhyri, S. Yusuf, New J. Phys. 2010, 12, 123026.
- 65 J. Curiale, M. Granada, H. Troiani, R. Sanchez, A. Levya, P. Levy, K. Samwer, Appl. Phys. Lett. 2009, 95, 043106.
- 66 D. Rybicki, M. Sikora, C. Kapusta, P. Riedi, Z. Jirak, K. Knizek, M. Marysko, E. Pollert, P. Veverka, Phys. Status Solidi C 2006, 3, 155.
- 67 V. Andrade, R. Caraballo-Vivas, T. Costas-Soares, S. Pedro, D. Rocco, M. Reis, A. Campos, A. Coelho, J. Solid State Chem. 2014, 219, 87.
- 68 S. Xi, W. Lu, H. Wu, P. Tong, Y. Sun, Y. Sun, J. Appl. Phys. 2012, 112, 123903.
- 69 J. Korcki, M. Przybylski, U. Gradmann, J. Magn. Magn. Mater. 1990, 89, 325.
- 70
S. V. Tyablikov,
Methods in the Quantum Theory of Magnetism,
Plenum Press,
New York
1967.
10.1007/978-1-4899-7182-1 Google Scholar
- 71 J. A. Souza, J. J. Neumeier, R. K. Bollinger, B. McGuire, C. A. M. dos Santos, H. Terashita, Phys. Rev. B 2007, 76, 024407.
- 72 G. Matsumoto, J. Phys. Soc. Jpn. 1970, 29, 606.
- 73 O. Chmaissem, B. Dabrowski, S. Kolesnik, J. Mais, D. Brown, R. Kruk, P. Prior, B. Pyles, J. Jorgensen, Phys. Rev. B 2001, 64, 134412.
- 74 S. Vasseur, E. Duguet, J. Portier, G. Goglio, S. Mornet, E. Hadova, K. Knizek, M. Marysko, P. Veverka, E. Pollert, J. Magn. Magn. Mater. 2006, 302, 315.
- 75 M. Ehsani, M. Ghazi, F. Razavi, M. Taheri, J. Appl. Phys. 2013, 114, 223907.
- 76 X. Huang, J. Ding, G. Znang, Y. Hou, Y. P. Yao, X. G. Li, Phys. Rev. B 2008, 78, 224408.
- 77 A. Monsen, J. Boschker, F. Macia, J. Wells, P. Nordblad, A. Kent, R. Mathieu, T. Tybell, E. Wahlstrom, J. Magn. Magn. Mater. 2014, 369, 197.
- 78 P. Dutta, P. Dey, T. Nath, J. Appl. Phys. 2007, 102, 073906.
- 79 C. Hintze, D. Fuchs, M. Merz, H. Amari, Ch. Kubel, M.-J. Huang, A. Powell, H. Lohneysen, J. Appl. Phys. 2017, 121, 214303.
- 80 S. Roy, I. Dubenko, D. Edorh, N. Ali, J. Appl. Phys. 2004, 96, 1202.
- 81 E. Verde, G. Landi, J. Gomes, M. Sousa, A. Phys. Bakuzis, J. Appl. Phys. 2012, 111, 123902.
- 82 J. Carrey, B. Mehdaoui, M. Respaud, J. Appl. Phys. 2011, 109, 083921.
- 83 Q. Pankhurst, N. Thanh, S. Jones, J. Dobson, J. Phys. D: Appl. Phys. 2009, 42, 224001.
- 84
Yu. Tserkovnikov,
Theor. Math. Phys.
1971,
7, 250.
10.1007/BF01028060 Google Scholar