Effect of Film Thickness on Photoelectrochemical Performance of SnO2 Prepared via AACVD
Corresponding Author
Mohamad F. Mohamad Noh
Solar Energy Research Institute SERI Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Search for more papers by this authorMohd F. Soh
Solar Energy Research Institute SERI Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Search for more papers by this authorMuhammad A. Riza
Solar Energy Research Institute SERI Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Search for more papers by this authorJavad Safaei
Solar Energy Research Institute SERI Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Search for more papers by this authorSiti N. F. Mohd Nasir
Solar Energy Research Institute SERI Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Search for more papers by this authorNorfaizzatul W. Mohamad Sapian
Solar Energy Research Institute SERI Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Search for more papers by this authorChin H. Teh
ASASIpintar Program Pusat PERMATApintar Negara Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Search for more papers by this authorMohd A. Ibrahim
Solar Energy Research Institute SERI Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Search for more papers by this authorNorasikin Ahmad Ludin
Solar Energy Research Institute SERI Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Search for more papers by this authorCorresponding Author
Mohd A. Mat Teridi
Solar Energy Research Institute SERI Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Search for more papers by this authorCorresponding Author
Mohamad F. Mohamad Noh
Solar Energy Research Institute SERI Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Search for more papers by this authorMohd F. Soh
Solar Energy Research Institute SERI Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Search for more papers by this authorMuhammad A. Riza
Solar Energy Research Institute SERI Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Search for more papers by this authorJavad Safaei
Solar Energy Research Institute SERI Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Search for more papers by this authorSiti N. F. Mohd Nasir
Solar Energy Research Institute SERI Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Search for more papers by this authorNorfaizzatul W. Mohamad Sapian
Solar Energy Research Institute SERI Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Search for more papers by this authorChin H. Teh
ASASIpintar Program Pusat PERMATApintar Negara Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Search for more papers by this authorMohd A. Ibrahim
Solar Energy Research Institute SERI Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Search for more papers by this authorNorasikin Ahmad Ludin
Solar Energy Research Institute SERI Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Search for more papers by this authorCorresponding Author
Mohd A. Mat Teridi
Solar Energy Research Institute SERI Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Search for more papers by this authorAbstract
Tin (IV) oxide (SnO2) is a stable semiconductor and has been used in a wide range of applications. In this work, aerosol-assisted chemical vapor deposition (AACVD) technique is employed to deposit SnO2 thin film with different layer thicknesses by controlling the deposition time. The morphological and optical properties of SnO2 layer are investigated thoroughly to understand the relationship between the deposition time and SnO2 performance in photoelectrochemical cells. The bandgap energy of all SnO2 thin films is determined to be 3.65 eV. However, from linear sweep voltammetry (LSV) analysis, it is found that SnO2 layer deposited for 15 min, which produced a layer with thickness of about 50 nm, showed the best photocurrent performance (30.7 µA cm−2 at 1.0 V vs. Ag/AgCl) compared to their thinner or thicker counterparts. The right thickness enables the formation of a film with complete surface coverage, which effectively prevents current leakage and allows optimum light absorption. Besides, electrochemical impedance spectroscopy (EIS) analysis confirms that 50 nm thick SnO2 layer possesses fastest electron transfer property compared to thicker or thinner layers.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
pssb201700570-sup-0001-SuppData-S1.pdf471.6 KB | Supporting Data S1. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
S. N. F. Mohd-Nasir,
M. A. Mat-Teridi,
M. Ebadi,
J. S. Sagu,
M. Sulaiman,
N. A. Ludin,
M. A. Ibrahim,
Phys. Status Solidi A
2015,
212, 2910.
10.1002/pssa.201532622 Google Scholar
- 2 A. A. Tahir, M. A. Mat-Teridi, K. G. U. Wijayantha, Phys. Status Solidi RRL 2014, 8, 976.
- 3 A. Kafizas, L. Francàs, C. Sotelo-Vazquez, M. Ling, Y. Li, E. Glover, L. McCafferty, C. Blackman, J. Darr, I. Parkin, J. Phys. Chem. C 2017, 121, 5983.
- 4
M. A. Mat-Teridi,
A. A. Tahir,
S. Senthilarasu,
K. G. U. Wijayantha,
M. Y. Sulaiman,
N. Ahmad-Ludin,
M. A. Ibrahim,
K. Sopian,
Phys. Status Solidi RRL
2014,
8, 982.
10.1002/pssr.201409056 Google Scholar
- 5 P. Tiwana, P. Docampo, M. B. Johnston, H. J. Snaith, L. M. Herz, ACS Nano 2011, 5, 5158.
- 6 T. Serin, N. Serin, S. Karadeniz, H. Sari, N. Tuğluoğlu, O. Pakma, J. Non. Cryst. Solids 2006, 352, 209.
- 7 J. C. Manifacier, M. De Murcia, J. P. Fillard, E. Vicario, Thin Solid Films 1977, 41, 127.
- 8 W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, J. Wan, G. Yang, Y. Yan, J. Am. Chem. Soc. 2015, 137, 6730.
- 9 E. Çetinörgü, S. Goldsmith, J. Phys. D. Appl. Phys. 2007, 40, 5220.
- 10 K. Ellmer, Nature Photon. 2012, 6, 808.
- 11 J. Bae, Y. J. Park, J. C. Yang, H. W. Kim, D. Y. Kim, J. Solid State Electrochem. 2015, 19, 211.
- 12 S. Das, V. Jayaraman, Prog. Mater. Sci. 2014, 66, 112.
- 13 A. Birkel, Y.-G. Lee, D. Koll, X. Van Meerbeek, S. Frank, M. J. Choi, Y. S. Kang, K. Char, W. Tremel, Energy Environ. Sci. 2012, 5, 5392.
- 14 M. F. M. Noh, C. H. Teh, R. Daik, E. L. Lim, C. C. Yap, M. A. Ibrahim, N. A. Ludin, A. R. B. M. Yusoff, J. Jang, M. A. M. Teridi, J. Mater. Chem. C 2018, Advance Article.
- 15
D. Hatem,
M. S. Belkaid,
Adv. Mater. Res.
2013,
685, 166.
10.4028/www.scientific.net/AMR.685.166 Google Scholar
- 16 M. F. M. Noh, M. F. Soh, C. H. Teh, E. L. Lim, C. C. Yap, M. A. Ibrahim, N. A. Ludin, M. A. M. Teridi, Sol. Energy 2017, 158, 474.
- 17 F. Gu, S. F. Wang, M. K. Lü, X. F. Cheng, S. W. Liu, G. J. Zhou, D. Xu, D. R. Yuan, J. Cryst. Growth 2004, 262, 182.
- 18 V. Vasu, A. Subrahmanyam, Thin Solid Films 1990, 189, 217.
- 19 J. P. C. Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T. J. Jacobsson, A. R. S. Kandada, S. M. Zakeeruddin, A. Petrozza, A. Abate, M. K. Nazeeruddin, M. Grätzel, A. Hagfeldt, Energy Environ. Sci. 2015, 8, 2928.
- 20 Y. M. Lu, J. Jiang, M. Becker, B. Kramm, L. Chen, A. Polity, Y. B. He, P. J. Klar, B. K. Meyer, Vacuum 2015, 122, 347.
- 21 S. P. Lim, N. M. Huang, H. N. Lim, M. Mazhar, Ceram. Int. 2014, 40, 8045.
- 22 S. N. F. Mohd Nasir, M. K. N. Yahya, N. W. Mohamad Sapian, N. Ahmad Ludin, M. A. Ibrahim, K. Sopian, M. A. Mat Teridi, RSC Adv. 2016, 6, 56885.
- 23 C. E. Knapp, C. J. Carmalt, Chem. Soc. Rev. 2016, 45, 1036.
- 24 P. Marchand, I. a Hassan, I. P. Parkin, C. J. Carmalt, Dalton Trans. 2013, 42, 9406.
- 25 H. Lu, Y. Ma, B. Gu, W. Tian, L. Li, J. Mater. Chem. A 2015, 3, 16445.
- 26 Y. Liang, C. S. Enache, R. van de Krol, Int. J. Photoenergy 2008, 2008, 1.
- 27 P. Chatchai, Y. Murakami, S.-y. Kishioka, A. Y. Nosaka, Y. Nosaka, Electrochem. Solid-State Lett. 2008, 11, H160.
- 28 R. Saito, Y. Miseki, K. Sayama, Chem. Commun. 2012, 48, 3833.
- 29 S. Byun, B. Kim, S. Jeon, B. Shin, J. Mater. Chem. A 2017, 5, 6905.
- 30 M. Z. Sialvi, R. J. Mortimer, G. D. Wilcox, A. M. Teridi, T. S. Varley, K. G. U. Wijayantha, C. A. Kirk, ACS Appl. Mater. Interfaces 2013, 5, 5675.
- 31 V. S. Anitha, S. S. Lekshmy, K. Joy, J. Mater. Sci. Mater. Electron. 2013, 24, 4340.
- 32 V.-H. Tran, R. B. Ambade, S. B. Ambade, S.-H. Lee, I.-H. Lee, ACS Appl. Mater. Interfaces 2017, 9, 1645.
- 33 M. R. Fadavieslam, H. Azimi-Juybari, M. Marashi, J. Mater. Sci. Mater. Electron. 2016, 27, 921.
- 34 P. Dias, T. Lopes, L. Meda, L. Andrade, A. Mendes, Phys. Chem. Chem. Phys. 2016, 18, 5232.
- 35 M. M. Khan, S. A. Ansari, M. E. Khan, M. O. Ansari, B.-K. Min, M. H. Cho, New J. Chem. 2015, 39, 2758.
- 36 L. A. King, Q. Yang, M. L. Grossett, Z. Galazka, R. Uecker, B. A. Parkinson, J. Phys. Chem. C 2016, 120, 15735.
- 37 Y. Gun, G. Y. Song, V. H. V. Quy, J. Heo, H. Lee, K.-S. Ahn, S. H. Kang, ACS Appl. Mater. Interfaces 2015, 7, 20292.
- 38 J. Krysa, M. Zlamal, S. Kment, M. Brunclikova, Z. Hubicka, Molecules 2015, 20, 1046.
- 39 L. Li, C. Xu, Y. Zhao, S. Chen, K. J. Ziegler, ACS Appl. Mater. Interfaces 2015, 7, 12824.
- 40 B. A. Pinaud, P. C. K. Vesborg, T. F. Jaramillo, J. Phys. Chem. C 2012, 116, 15918.
- 41
F. E. Osterloh, in
Solar Energy for Fuels (Eds: H. Tüysüz, C. K. Chan),
Springer International Publishing,
Cham, Switzerland
2015, pp. 105–142.
10.1007/128_2015_633 Google Scholar