Novel Codoping Moiety to Achieve Enhanced P-Type Doping in GaN by Ion Implantation
Corresponding Author
Alan G. Jacobs
Power Electronics and Advanced Materials Branch, United States Naval Research Laboratory, Washington, DC, 20375 USA
Search for more papers by this authorJoseph A. Spencer
Power Electronics and Advanced Materials Branch, United States Naval Research Laboratory, Washington, DC, 20375 USA
Materials Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061 USA
Search for more papers by this authorJennifer K. Hite
Power Electronics and Advanced Materials Branch, United States Naval Research Laboratory, Washington, DC, 20375 USA
Search for more papers by this authorKarl D. Hobart
Power Electronics and Advanced Materials Branch, United States Naval Research Laboratory, Washington, DC, 20375 USA
Search for more papers by this authorTravis J. Anderson
Power Electronics and Advanced Materials Branch, United States Naval Research Laboratory, Washington, DC, 20375 USA
Search for more papers by this authorCorresponding Author
Boris N. Feigelson
Power Electronics and Advanced Materials Branch, United States Naval Research Laboratory, Washington, DC, 20375 USA
Search for more papers by this authorCorresponding Author
Alan G. Jacobs
Power Electronics and Advanced Materials Branch, United States Naval Research Laboratory, Washington, DC, 20375 USA
Search for more papers by this authorJoseph A. Spencer
Power Electronics and Advanced Materials Branch, United States Naval Research Laboratory, Washington, DC, 20375 USA
Materials Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061 USA
Search for more papers by this authorJennifer K. Hite
Power Electronics and Advanced Materials Branch, United States Naval Research Laboratory, Washington, DC, 20375 USA
Search for more papers by this authorKarl D. Hobart
Power Electronics and Advanced Materials Branch, United States Naval Research Laboratory, Washington, DC, 20375 USA
Search for more papers by this authorTravis J. Anderson
Power Electronics and Advanced Materials Branch, United States Naval Research Laboratory, Washington, DC, 20375 USA
Search for more papers by this authorCorresponding Author
Boris N. Feigelson
Power Electronics and Advanced Materials Branch, United States Naval Research Laboratory, Washington, DC, 20375 USA
Search for more papers by this authorAbstract
Codoping of gallium nitride for improved acceptor ionization has long been theorized; however, reduction to practice proves difficult via growth. Herein, implementation of codoping via ion implantation and symmetric multicycle rapid thermal annealing utilizing magnesium codoped with silicon or oxygen is demonstrated. Results show enhanced photoluminescence with both donor species but with an order of magnitude greater increase with concurrent p-type hall for codoping with oxygen. Furthermore, the addition of nitrogen to balance stoichiometry suppresses defect photoluminescence signals. The incorporation of the donor and nitrogen demonstrates defect reduction beyond magnesium, only implants despite the additional implant dose and resultant damage with coimplantation. The enhanced hole concentrations evident with oxygen incorporation reveal important considerations for device design given unintentional doping during growth and future incorporation of ion implantation capabilities.
Conflict of Interest
The authors declare no conflicts of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1R. S. Pengelly, S. M. Wood, J. W. Milligan, S. T. Sheppard, W. L. Pribble, IEEE Trans. Microwave Theory Tech. 2012, 60, 1764.
- 2Y.-F. Wu, J. Gritters, L. Shen, R. P. Smith, B. Swenson, IEEE Trans. Power Electron. 2014, 29, 2634.
- 3K. J. Chen, O. Haberlen, A. Lidow, C. L. Tsai, T. Ueda, Y. Uemoto, Y. Wu, IEEE Trans. Electron Devices 2017, 64, 779.
- 4S. P. Denbaars, D. Feezell, K. Kelchner, S. Pimputkar, C.-C. Pan, C.-C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, M. Iza, S. Keller, U. Mishra, J. S. Speck, S. Nakamura, Acta Mater. 2013, 61, 945.
- 5H. Nie, Q. Diduck, B. Alvarez, A. P. Edwards, B. M. Kayes, M. Zhang, G. Ye, T. Prunty, D. Bour, I. C. Kizilyalli, IEEE Electron Device Lett. 2014, 35, 939.
- 6M. Sun, Y. Zhang, X. Gao, T. Palacios, IEEE Electron Device Lett. 2017, 38, 509.
- 7Y. Zhang, Z. Liu, M. J. Tadjer, M. Sun, D. Piedra, C. Hatem, T. J. Anderson, L. E. Luna, A. Nath, A. D. Koehler, H. Okumura, J. Hu, X. Zhang, X. Gao, B. N. Feigelson, K. D. Hobart, T. Palacios, IEEE Electron Device Lett. 2017, 38, 1097.
- 8M. A. Reshchikov, P. Ghimire, D. O. Demchenko, Phys. Rev. B 2018, 97, 205204.
- 9S. Shen, W. Shen, S. Liu, H. Li, Y. Chen, H. Qi, Mater. Today Commun. 2020, 23, 100847.
- 10S. J. Sque, R. Jones, J. P. Goss, P. R. Briddon, Phys. Rev. Lett. 2004, 92, 4.
- 11H. Katayama-Yoshida, T. Nishimatsu, T. Yamamoto, N. Orita, J. Phys. Condens. Matter 2001, 13, 8901.
- 12R. Y. Korotkov, J. M. Gregie, B. W. Wessels, Opto-Electron. Rev. 2002, 10, 243.
- 13M. H. Wong, C.-H. Lin, A. Kuramata, S. Yamakoshi, H. Murakami, Y. Kumagai, M. Higashiwaki, Appl. Phys. Lett. 2018, 113, 102103.
- 14C. Yan, J. Su, Y. Wang, Z. Lin, J. Zhang, J. Chang, Y. Hao, J. Alloys Compd. 2021, 854, 157247.
- 15H. Reiss, C. S. Fuller, A. J. Pietruszkiewicz, J. Chem. Phys. 1956, 25, 650.
- 16H. Reiss, C. S. Fuller, F. J. Morin, Bell Syst. Tech. J. 1956, 25, 650.
- 17R. Y. Korotkov, J. M. Gregie, B. W. Wessels, Appl. Phys. Lett. 2001, 78, 222.
- 18S. Nakamura, N. Iwasa, M. S. Masayuki Senoh, T. M. Takashi Mukai, Jpn. J. Appl. Phys. 1992, 31, 1258.
- 19K. S. Kim, C. S. Oh, M. S. Han, C. S. Kim, G. M. Yang, J. W. Yang, C.-H. Hong, C. J. Youn, K. Y. Lim, H. J. Lee, MRS Proc. 2000, 595, 2.
- 20G. Kipshidze, V. Kuryatkov, B. Borisov, Y. Kudryavtsev, R. Asomoza, S. Nikishin, H. Temkin, Appl. Phys. Lett. 2002, 80, 2910.
- 21T. Yamamoto, Phys. Status Solidi Appl. Res. 2002, 193, 423.
- 22T. J. Anderson, J. D. Greenlee, B. N. Feigelson, J. K. Hite, K. D. Hobart, F. J. Kub, IEEE Trans. Semicond. Manuf. 2016, 29, 343.
- 23T. J. Anderson, J. D. Greenlee, B. N. Feigelson, J. K. Hite, F. J. Kub, K. D. Hobart, ECS J. Solid State Sci. Technol. 2016, 5, Q176.
- 24A. G. Jacobs, B. N. Feigelson, J. K. Hite, C. A. Gorsak, L. E. Luna, T. J. Anderson, F. J. Kub, Jpn. J. Appl. Phys. 2019, 58, SCCD07.
- 25M. A. Ebrish, T. J. Anderson, A. G. Jacobs, J. C. Gallagher, J. K. Hite, M. A. Mastro, B. N. Feigelson, Y. Wang, M. Liao, M. Goorsky, K. D. Hobart, J. Electron. Mater. 2021, 50, 4642.
- 26B. N. Feigelson, T. J. Anderson, M. Abraham, J. A. Freitas, J. K. Hite, C. R. Eddy, F. J. Kub, J. Cryst. Growth 2012, 350, 21.
- 27T. J. Anderson, J. C. Gallagher, L. E. Luna, A. D. Koehler, A. G. Jacobs, J. Xie, E. Beam, K. D. Hobart, B. N. Feigelson, J. Cryst. Growth 2018, 499, 35.
- 28J. D. Greenlee, B. Feigelson, T. J. Anderson, J. K. Hite, K. D. Hobart, F. J. Kub, ECS Trans. 2015, 69, 97.
- 29J. D. Greenlee, B. N. Feigelson, T. J. Anderson, J. K. Hite, K. D. Hobart, F. J. Kub, ECS J. Solid State Sci. Technol. 2015, 4, P382.
- 30J. D. Greenlee, T. J. Anderson, B. N. Feigelson, V. D. Wheeler, K. D. Hobart, F. J. Kub, ECS J. Solid State Sci. Technol. 2015, 4, P403.
- 31A. D. Koehler, T. J. Anderson, M. J. Tadjer, B. N. Feigelson, K. D. Hobart, F. J. Kub, A. Nath, D. I. Shahin, in 2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), IEEE, Piscataway, NJ 2016, pp. 344–346.
- 32A. D. Koehler, T. J. Anderson, M. J. Tadjer, A. Nath, B. N. Feigelson, D. I. Shahin, K. D. Hobart, F. J. Kub, ECS J. Solid State Sci. Technol. 2017, 6, Q10.
- 33Y. Zhang, Z. Liu, M. J. Tadjer, M. Sun, D. Piedra, C. Hatem, T. J. Anderson, L. E. Luna, A. Nath, A. D. Koehler, H. Okumura, J. Hu, X. Zhang, X. Gao, B. N. Feigelson, K. D. Hobart, T. Palacios, IEEE Electron Device Lett. 2017, 38, 1097.
- 34A. G. Jacobs, B. N. Feigelson, J. K. Hite, C. A. Gorsak, L. E. Luna, T. J. Anderson, F. J. Kub, Phys. Status Solidi Appl. Mater. Sci. 2019, 217, 1900789.
- 35H. Sakurai, T. Narita, K. Hirukawa, S. Yamada, A. Koura, K. Kataoka, M. Horita, N. Ikarashi, M. Bockowski, J. Suda, T. Kachi, Proc. Int. Symp. on Power Semiconductor Devices and ICs, September 2020, pp. 321–324.
- 36A. Uedono, H. Sakurai, T. Narita, K. Sierakowski, M. Bockowski, J. Suda, S. Ishibashi, S. F. Chichibu, T. Kachi, Sci. Rep. 2020, 10, 17349.
- 37M. Matys, T. Ishida, K. P. Nam, H. Sakurai, K. Kataoka, T. Narita, T. Uesugi, M. Bockowski, T. Nishimura, J. Suda, T. Kachi, Appl. Phys. Express 2021, 14, 074002.
- 38M. Matys, T. Ishida, K. P. Nam, H. Sakurai, T. Narita, T. Uesugi, M. Bockowski, J. Suda, T. Kachi, Appl. Phys. Lett. 2021, 118, 093502.
- 39T. Narita, H. Yoshida, K. Tomita, K. Kataoka, H. Sakurai, M. Horita, M. Bockowski, N. Ikarashi, J. Suda, T. Kachi, Y. Tokuda, J. Appl. Phys. 2020, 128, 090901.
- 40T. Narita, A. Uedono, T. Kachi, Phys. Status Solidi Basic Res. 2022, 259, 2200235.
- 41F. Roccaforte, F. Giannazzo, G. Greco, Micro 2022, 2, 23.
10.3390/micro2010002 Google Scholar
- 42T. Nakashima, E. Kano, K. Kataoka, S. Arai, H. Sakurai, T. Narita, K. Sierakowski, M. Bockowski, M. Nagao, J. Suda, T. Kachi, N. Ikarashi, Appl. Phys. Express 2021, 14, 011005.
- 43K. Iwata, H. Sakurai, S. Arai, T. Nakashima, T. Narita, K. Kataoka, M. Bockowski, M. Nagao, J. Suda, T. Kachi, N. Ikarashi, J. Appl. Phys. 2020, 127, 105106.
- 44K. Hogan, S. Tozier, E. Rocco, I. Mahaboob, V. Meyers, B. McEwen, F. Shahedipour-Sandvik, R. Tompkins, M. Derenge, K. Jones, M. Shevelev, V. Sklyar, A. Lang, J. Hart, M. Taheri, M. Reshchikov, in IEEE Int. Reliability Physics Symposium (IRPS) Proc., IEEE, Piscataway, NJ, March 2019.
- 45V. Meyers, E. Rocco, T. J. Anderson, J. C. Gallagher, M. A. Ebrish, K. Jones, M. Derenge, M. Shevelev, V. Sklyar, K. Hogan, B. Mcewen, F. Shahedipour-Sandvik , J. Appl. Phys. 2020, 128, 085701.
- 46V. Meyers, E. Rocco, K. Hogan, B. Mcewen, M. Shevelev, V. Sklyar, K. Jones, M. Derenge, F. Shahedipour-Sandvik , J. Appl. Phys. 2021, 130, 085704.
- 47S. G. Sundaresan, M. Murthy, M. V. Rao, J. A. Schreifels, M. A. Mastro, C. R. Eddy, R. T. Holm, R. L. Henry, J. A. Freitas, E. Gomar-Nadal, R. D. Vispute, Y.-L. Tian, Semicond. Sci. Technol. 2007, 22, 1151.
- 48M. Yoshino, Y. Ando, M. Deki, T. Toyabe, K. Kuriyama, Y. Honda, T. Nishimura, H. Amano, T. Kachi, T. Nakamura, Materials 2019, 12, 689.
- 49M. Yoshino, K. Sugamata, K. Ikeda, T. Nishimura, K. Kuriyama, T. Nakamura, Nucl. Inst. Methods Phys. Res. Sect. B 2019, 449, 49.
- 50K. Ito, K. Tomita, D. Kikuta, M. Horita, T. Narita, J. Appl. Phys. 2021, 129, 084502.
- 51J. K. Hite, T. J. Anderson, L. E. Luna, J. C. Gallagher, M. A. Mastro, J. A. Freitas, C. R. Eddy, J. Cryst. Growth 2018, 498, 352.
- 52C. G. Van De Walle, J. Neugebauer, J. Appl. Phys. 2004, 95, 3851.
- 53H. Sakurai, M. Omori, S. Yamada, Y. Furukawa, H. Suzuki, T. Narita, K. Kataoka, M. Bockowski, J. Suda, T. Kachi, in Gallium Nitride Materials and Devices XIV, 2019, p. 30.