Effect of GaN/AlGaN Buffer Thickness on the Electrothermal Performance of AlGaN/GaN High Electron Mobility Transistors on Engineered Substrates
Corresponding Author
Marko J. Tadjer
Electronics Science and Technology Division, United States Naval Research Laboratory, Washington, DC, 20375 USA
Search for more papers by this authorPatrick Waltereit
Fraunhofer Institute for Applied Solid State Physics, 79108 Freiburg, Germany
Search for more papers by this authorLutz Kirste
Fraunhofer Institute for Applied Solid State Physics, 79108 Freiburg, Germany
Search for more papers by this authorStefan Müller
Fraunhofer Institute for Applied Solid State Physics, 79108 Freiburg, Germany
Search for more papers by this authorJames Spencer Lundh
National Research Council Postdoctoral Fellow, Residing at NRL, Washington, DC, 20375 USA
Search for more papers by this authorAlan G. Jacobs
Electronics Science and Technology Division, United States Naval Research Laboratory, Washington, DC, 20375 USA
Search for more papers by this authorAndrew D. Koehler
Electronics Science and Technology Division, United States Naval Research Laboratory, Washington, DC, 20375 USA
Search for more papers by this authorPeter Raad
TMX Scientific, Richardson, TX, 75081 USA
Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, 75205 USA
Search for more papers by this authorPatrick Hopkins
LaserThermal Inc., Charlottesville, VA, 22902 USA
Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904 USA
Search for more papers by this authorTravis J. Anderson
Electronics Science and Technology Division, United States Naval Research Laboratory, Washington, DC, 20375 USA
Search for more papers by this authorKarl D. Hobart
Electronics Science and Technology Division, United States Naval Research Laboratory, Washington, DC, 20375 USA
Search for more papers by this authorCorresponding Author
Marko J. Tadjer
Electronics Science and Technology Division, United States Naval Research Laboratory, Washington, DC, 20375 USA
Search for more papers by this authorPatrick Waltereit
Fraunhofer Institute for Applied Solid State Physics, 79108 Freiburg, Germany
Search for more papers by this authorLutz Kirste
Fraunhofer Institute for Applied Solid State Physics, 79108 Freiburg, Germany
Search for more papers by this authorStefan Müller
Fraunhofer Institute for Applied Solid State Physics, 79108 Freiburg, Germany
Search for more papers by this authorJames Spencer Lundh
National Research Council Postdoctoral Fellow, Residing at NRL, Washington, DC, 20375 USA
Search for more papers by this authorAlan G. Jacobs
Electronics Science and Technology Division, United States Naval Research Laboratory, Washington, DC, 20375 USA
Search for more papers by this authorAndrew D. Koehler
Electronics Science and Technology Division, United States Naval Research Laboratory, Washington, DC, 20375 USA
Search for more papers by this authorPeter Raad
TMX Scientific, Richardson, TX, 75081 USA
Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, 75205 USA
Search for more papers by this authorPatrick Hopkins
LaserThermal Inc., Charlottesville, VA, 22902 USA
Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904 USA
Search for more papers by this authorTravis J. Anderson
Electronics Science and Technology Division, United States Naval Research Laboratory, Washington, DC, 20375 USA
Search for more papers by this authorKarl D. Hobart
Electronics Science and Technology Division, United States Naval Research Laboratory, Washington, DC, 20375 USA
Search for more papers by this authorAbstract
AlGaN/GaN high electron mobility transistors on QST engineered substrates are grown with different GaN/AlGaN buffer layer thickness. The as-grown heterostructures are evaluated for their structural quality via atomic force microscopy, high-resolution X-ray diffraction, Raman spectroscopy, and steady-state thermoreflectance. Transistor devices are fabricated and evaluated via DC and pulsed electrical techniques, as well as thermoreflectance imaging. It is reported that buffer layer thickness of at least 10 μm can result in lateral high electron mobility transistors (HEMTs) with simultaneously high GaN quality, low stress, good DC electrical performance, low current collapse, and low thermal resistance.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1A. Krost, A. Dadgar, Phys. State Solid A 2002, 194, 361.
- 2F. J. Kub, K. D. Hobart, U.S. Patent No. 6,328,796, 2001.
- 3F. J. Kub, K. D. Hobart, U.S. Patent No. 6,497,763, 2002.
- 4K. D. Hobart, T. J. Anderson, A. D. Koehler, A. Nath, J. K. Hite, N. A. Mahadik, F. J. Kub, O. Aktas, V. Odnoblyudov, C. Basceri, in CS Mantech Conf. Digest, CS Mantech, Indian Wells, CA, May 2017, p. 16.3.
- 5T. J. Anderson, A. D. Koehler, M. J. Tadjer, J. K. Hite, A. Nath, N. A. Mahadik, O. Aktas, V. Odnoblyudov, C. Basceri, K. D. Hobart, Appl. Phys. Express 2017, 10, 126501.
10.7567/APEX.10.126501 Google Scholar
- 6T. J. Anderson, L. E. Luna, O. Aktas, G. M. Foster, A. D. Koehler, M. J. Tadjer, M. A. Mastro, K. D. Hobart, V. Odnoblyudov, C. Basceri, ECS J. Solid State Sci. Technol. 2019, 8, Q226.
- 7X. Li, K. Geens, W. Guo, S. You, M. Zhao, D. Fahle, V. Odnoblyudov, G. Groeseneken, S. Decoutere, IEEE Electron Device Lett. 2019, 40, 1499.
- 8K. Geens, X. Li, M. Zhao, W. Guo, D. Wellekens, N. Posthuma, D. Fahle, O. Aktas, V. Odnoblyudov, S. Decoutere, in 2019 IEEE 7th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Raleigh, NC, October 2019, pp. 292–296. https://doi.org/10.1109/WiPDA46397.2019.8998922.
10.1109/WiPDA46397.2019.8998922 Google Scholar
- 9X. Li, K. Geens, D. Wellekens, M. Zhao, A. Magnani, N. Amirifar, B. Bakeroot, et al., IEEE Trans. Semicond. Manuf. 2020, 33, 534.
- 10A. Zubair, J. Perozek, J. Niroula, O. Aktas, V. Odnoblyudov, T. Palacios, in 2020 Device Research Conf. (DRC), Columbus, OH, June 2020 https://doi.org/10.1109/DRC50226.2020.9135176.
10.1109/DRC50226.2020.9135176 Google Scholar
- 11J. L. Braun, D. H. Olson, J. T. Gaskins, P. E. Hopkins, Rev. Sci. Instrum. 2019, 90, 024905.
- 12M. G. Burzo, P. L. Komarov, P. E. Raad, IEEE Trans. Compon. Packag. Tech. 2005, 28, 637.
- 13P. E. Raad, P. L. Komarov, M. G. Burzo, Microelectr. J. 2008, 39, 1008.
- 14W. Wang, L. Li, L. He, F. Yang, Z. Chen, Y. Zheng, L. He, Z. Wu, B. Zhang, Y. Liu, in 2016 13th China Int. Forum on Solid State Lighting: Int. Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS), Beijing, China, November 2016, pp. 77-80. https://doi.org/10.1109/IFWS.2016.7803761.
10.1109/IFWS.2016.7803761 Google Scholar
- 15M. Seon, T. Prokofyeva, M. Holtz, S. A. Nikishin, N. N. Faleev, H. Temkin, Appl. Phys. Lett. 2000, 76, 1842.
- 16T. Beechem, S. Graham, S. P. Kearney, L. M. Phinney, J. R. Serrano, Rev. Sci. Instrum. 2007, 78, 061301.
- 17M. Kuball, Surf. Interface Anal. 2001, 31, 987.
- 18J. S. Lundh, K. Coleman, Y. Song, B. A. Griffin, G. Esteves, E. A. Douglas, A. Edstrand, S. C. Badescu, E. A. Moore, J. H. Leach, B. Moody, S. Trolier-McKinstry, S. Choi, J. Appl. Phys. 2021, 130, 044501.
- 19S. Choi, E. Heller, D. Dorsey, R. Vetury, S. Graham, J. Appl. Phys. 2013, 113, 093510.
- 20A. F. Wilson, A. Wakejima, T. Egawa, Appl. Phys. Express 2013, 6, 086504.
10.7567/APEX.6.086504 Google Scholar
- 21Y. Cao, J. W. Pomeroy, M. J. Uren, F. Yang, M. Kuball, Nat. Electron. 2021, 4, 478.
- 22J. Kuzmik, R. Javorka, A. Alam, M. Marso, M. Heuken, P. Kordos, IEEE Trans. Electron Dev. 2002, 49, 1496.
- 23D. Jin, J. A. del Alamo, IEEE Trans. Electr. Dev. 2013, 60, 3190.
- 24S. Martin-Horcajo, A. Wang, M.-F. Romero, M. J. Tadjer, F. Calle, IEEE Trans. Electron Dev. 2013, 60, 4105.
- 25M. J. Tadjer, T. J. Anderson, M. G. Ancona, P. E. Raad, P. Komarov, T. Bai, J. C. Gallagher, et al., IEEE Electron Dev. Lett. 2019, 40, 881.