2.2 W/mm at 94 GHz in AlN/GaN/AlN High-Electron-Mobility Transistors on SiC
Corresponding Author
Austin Hickman
Electrical and Computer Engineering, Cornell University, Ithaca, NY, 14853 USA
Search for more papers by this authorReet Chaudhuri
Electrical and Computer Engineering, Cornell University, Ithaca, NY, 14853 USA
Search for more papers by this authorLei Li
Electrical and Computer Engineering, Cornell University, Ithaca, NY, 14853 USA
Search for more papers by this authorKazuki Nomoto
Electrical and Computer Engineering, Cornell University, Ithaca, NY, 14853 USA
Search for more papers by this authorNeil Moser
Wright-Patterson Air Force Base, Dayton, OH, 45433 USA
Search for more papers by this authorMichael Elliott
Wright-Patterson Air Force Base, Dayton, OH, 45433 USA
Search for more papers by this authorMatthew Guidry
U.C. Santa Barbara, Santa Barbara, CA, 93106 USA
Search for more papers by this authorKeisuke Shinohara
Teledyne Scientific and Imaging, Thousand Oaks, CA, 91360 USA
Search for more papers by this authorJames C. M. Hwang
Material Science and Engineering, Cornell University, Ithaca, NY, 14853 USA
Search for more papers by this authorHuili Grace Xing
Electrical and Computer Engineering, Cornell University, Ithaca, NY, 14853 USA
Material Science and Engineering, Cornell University, Ithaca, NY, 14853 USA
Kavli Institute, Cornell University, Ithaca, NY, 14853 USA
Search for more papers by this authorDebdeep Jena
Electrical and Computer Engineering, Cornell University, Ithaca, NY, 14853 USA
Material Science and Engineering, Cornell University, Ithaca, NY, 14853 USA
Kavli Institute, Cornell University, Ithaca, NY, 14853 USA
Search for more papers by this authorCorresponding Author
Austin Hickman
Electrical and Computer Engineering, Cornell University, Ithaca, NY, 14853 USA
Search for more papers by this authorReet Chaudhuri
Electrical and Computer Engineering, Cornell University, Ithaca, NY, 14853 USA
Search for more papers by this authorLei Li
Electrical and Computer Engineering, Cornell University, Ithaca, NY, 14853 USA
Search for more papers by this authorKazuki Nomoto
Electrical and Computer Engineering, Cornell University, Ithaca, NY, 14853 USA
Search for more papers by this authorNeil Moser
Wright-Patterson Air Force Base, Dayton, OH, 45433 USA
Search for more papers by this authorMichael Elliott
Wright-Patterson Air Force Base, Dayton, OH, 45433 USA
Search for more papers by this authorMatthew Guidry
U.C. Santa Barbara, Santa Barbara, CA, 93106 USA
Search for more papers by this authorKeisuke Shinohara
Teledyne Scientific and Imaging, Thousand Oaks, CA, 91360 USA
Search for more papers by this authorJames C. M. Hwang
Material Science and Engineering, Cornell University, Ithaca, NY, 14853 USA
Search for more papers by this authorHuili Grace Xing
Electrical and Computer Engineering, Cornell University, Ithaca, NY, 14853 USA
Material Science and Engineering, Cornell University, Ithaca, NY, 14853 USA
Kavli Institute, Cornell University, Ithaca, NY, 14853 USA
Search for more papers by this authorDebdeep Jena
Electrical and Computer Engineering, Cornell University, Ithaca, NY, 14853 USA
Material Science and Engineering, Cornell University, Ithaca, NY, 14853 USA
Kavli Institute, Cornell University, Ithaca, NY, 14853 USA
Search for more papers by this authorAbstract
Aluminum nitride (AlN) offers novel potential for electronic integration and performance benefits for high-power, millimeter-wave amplification. Herein, load-pull power performance at 30 and 94 GHz for AlN/GaN/AlN high-electron-mobility transistors (HEMTs) on silicon carbide (SiC) is reported. When tuned for peak power-added efficiency (PAE), the reported AlN/GaN/AlN HEMT shows PAE of 25% and 15%, with associated output power () of 2.5 and 1.7 W mm−1, at 30 and 94 GHz, respectively. At 94 GHz, the maximum generated is 2.2 W mm−1, with associated PAE of 13%.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1Y.-F. Wu, M. Moore, A. Saxler, T. Wisleder, P. Parikh, in Device Research Conf. - Conf. Digest, DRC, University Park, PA 2006, pp. 151–152, ISBN 0780397495.
- 2Y. Wu, M. Moore, A. Abrahamsen, P. Parikh, S. Heikman, A. Burk, in 2007 IEEE Int. Electron Devices Meeting, IEEE, Piscataway, NJ 2007, pp. 405–407.
- 3B. Romanczyk, U. K. Mishra, X. Zheng, M. Guidry, H. Li, N. Hatui, C. Wurm, A. Krishna, E. Ahmadi, S. Keller, IEEE Electron Device Lett. 2020, 41, 349.
- 4G. Li, R. Wang, J. Guo, J. Verma, Z. Hu, Y. Yue, F. Faria, Y. Cao, M. Kelly, T. Kosel, H. G. Xing, D. Jena, IEEE Electron Device Lett. 2012, 33, 661.
- 5A. Hickman, R. Chaudhuri, S. J. Bader, K. Nomoto, K. Lee, H. G. Xing, S. Member, D. Jena, S. Member, A. In, IEEE Electron Device Lett. 2019, 40, 1293.
- 6A. Hickman, R. Chaudhuri, L. Li, K. Nomoto, S. J. Bader, J. C. Hwang, H. G. Xing, D. Jena, IEEE J. Electron Devices Soc. 2020, 9, 121.
- 7S. Ozaki, J. Yaita, A. Yamada, Y. Kumazaki, Y. Minoura, T. Ohki, N. Okamoto, N. Nakamura, J. Kotani, Appl. Phys. Express 2021, 14, 4.
- 8I. Abid, R. Kabouche, C. Bougerol, J. Pernot, C. Masante, R. Comyn, Y. Cordier, F. Medjdoub, Micromachines 2019, 10, 10.
- 9Y. Tang, K. Shinohara, D. Regan, A. Corrion, D. Brown, J. Wong, A. Schmitz, H. Fung, S. Kim, M. Micovic, IEEE Electron Device Lett. 2015, 36, 549.
- 10K. Shinohara, A. Corrion, D. Regan, I. Milosavljevic, D. Brown, S. Burnham, P. Willadsen, C. Butler, A. Schmitz, D. Wheeler, A. Fung, M. Micovic, in 2010 Int. Electron Devices Meeting, IEEE, Piscataway, NJ 2010, p. 672, ISBN 9781424474196.
- 11K. Shinohara, D. Regan, A. Corrion, D. Brown, S. Burnham, P. J. Willadsen, M. Cunningham, C. Butler, A. Schmitz, S. Kim, B. Holden, D. Chang, V. Lee, A. Ohoka, P. M. Asbeck, M. Micovic, in 2011 Int. Electron Devices Meeting, Washington DC, Vol. 2, 2011, p. D 1.
- 12A. Margomenos, A. Kurdoghlian, M. Micovic, K. Shinohara, D. F. Brown, A. L. Corrion, H. P. Moyer, S. Burnham, D. C. Regan, R. M. Grabar, C. McGuire, M. D. Wetzel, R. Bowen, P. S. Chen, H. Y. Tai, A. Schmitz, H. Fung, A. Fung, D. H. Chow, in Technical Digest - IEEE Compound Semiconductor Integrated Circuit Symp., CSIC, IEEE, Piscataway, NJ 2014, pp. 14–17.
- 13M. Micovic, D. Brown, D. Regan, J. Wong, J. Tai, A. Kurdoghlian, F. Herrault, Y. Tang, S. D. Burnham, H. Fung, A. Schmitz, I. Khalaf, D. Santos, E. Prophet, H. Bracamontes, C. Mcguire, R. Grabar, in IEEE Compound Semiconductor Integrated Circuit Symp., IEEE, Piscataway, NJ 2016, pp. 3–6.
- 14E. Dogmus, R. Kabouche, A. Linge, E. Okada, M. Zegaoui, F. Medjdoub, Phys. Status Solidi (A) 2017, 214, 8.
- 15K. Harrouche, R. Kabouche, E. Okada, F. Medjdoub, IEEE J. Electron Devices Soc. 2019, 7, 1145.
- 16S. Bader, H. Lee, R. Chaudhuri, S. Huang, A. Hickman, A. Molnar, H. Xing, D. Jena, H. Then, N. Chowdhury, T. Palacios, IEEE Trans. Electron Devices 2020, 67, 4010.
- 17R. Chaudhuri, S. J. Bader, Z. Chen, D. A. Muller, H. G. Xing, D. Jena, Science 2019, 365, 1454.
- 18K. Nomoto, R. Chaudhuri, S. J. Bader, L. Li, A. Hickman, S. Huang, H. Lee, T. Maeda, H. W. Then, M. Radosavljevic, P. Fischer, A. Molnar, J. C. M. Hwang, H. G. Xing, D. Jena, in Technical Digest - Int. Electron Devices Meeting, IEDM San Francisco, CA 2020, pp. 8.3.1–8.3.4, https://doi.org/10.1109/IEDM13553.2020.9371994.
10.1109/IEDM13553.2020.9371994 Google Scholar
- 19J. Miller, J. Wright, H. G. Xing, D. Jena, Phys. Status Solidi (A) 2020, 217, 2.
- 20M. J. Asadi, L. Li, W. Zhao, K. Nomoto, P. Fay, H. G. Xing, D. Jena, J. C. M. Hwang, in IEEE MTT-S Int. Microwave Symp. Digest, IEEE, Piscataway, NJ 2021, pp. 1–4.
- 21A. L. Hickman, R. Chaudhuri, S. J. Bader, K. Nomoto, L. Li, J. Hwang, H. G. Xing, D. Jena, Semicond. Sci. Technol. 2021, 36, 4.
- 22A. Hickman, R. Chaudhuri, N. Moser, M. Elliott, K. Nomoto, L. Li, J. C. M. Hwang, H. Grace Xing, D. Jena, in 2021 Device Research Conf. (DRC), IEEE, Piscataway, NJ 2021, pp. 1–2, ISBN 9781665412407, ISSN 15483770.
- 23R. Chaudhuri, A. Hickman, J. Singhal, J. Casamento, H. G. Xing, D. Jena, Phys. Status Solidi (A) 2022, 219, 4.