Impact of the Channel Thickness on Electron Confinement in MOCVD-Grown High Breakdown Buffer-Free AlGaN/GaN Heterostructures
Corresponding Author
Ding-Yuan Chen
Department of Research and Development, SweGaN AB, Olaus Magnus väg 48A, 583 30 Linköping, Sweden
Search for more papers by this authorKai-Hsin Wen
Department of Research and Development, SweGaN AB, Olaus Magnus väg 48A, 583 30 Linköping, Sweden
Search for more papers by this authorMattias Thorsell
Microwave Electronics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, Chalmersplatsen 4, 412 96 Göteborg, Sweden
Search for more papers by this authorMartino Lorenzini
Department of Research and Development, SweGaN AB, Olaus Magnus väg 48A, 583 30 Linköping, Sweden
Search for more papers by this authorHans Hjelmgren
Microwave Electronics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, Chalmersplatsen 4, 412 96 Göteborg, Sweden
Search for more papers by this authorJr-Tai Chen
Department of Research and Development, SweGaN AB, Olaus Magnus väg 48A, 583 30 Linköping, Sweden
Search for more papers by this authorNiklas Rorsman
Microwave Electronics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, Chalmersplatsen 4, 412 96 Göteborg, Sweden
Search for more papers by this authorCorresponding Author
Ding-Yuan Chen
Department of Research and Development, SweGaN AB, Olaus Magnus väg 48A, 583 30 Linköping, Sweden
Search for more papers by this authorKai-Hsin Wen
Department of Research and Development, SweGaN AB, Olaus Magnus väg 48A, 583 30 Linköping, Sweden
Search for more papers by this authorMattias Thorsell
Microwave Electronics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, Chalmersplatsen 4, 412 96 Göteborg, Sweden
Search for more papers by this authorMartino Lorenzini
Department of Research and Development, SweGaN AB, Olaus Magnus väg 48A, 583 30 Linköping, Sweden
Search for more papers by this authorHans Hjelmgren
Microwave Electronics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, Chalmersplatsen 4, 412 96 Göteborg, Sweden
Search for more papers by this authorJr-Tai Chen
Department of Research and Development, SweGaN AB, Olaus Magnus väg 48A, 583 30 Linköping, Sweden
Search for more papers by this authorNiklas Rorsman
Microwave Electronics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, Chalmersplatsen 4, 412 96 Göteborg, Sweden
Search for more papers by this authorAbstract
The 2D electron gas (2DEG) confinement on high electron mobility transistor (HEMT) heterostructures with a thin undoped GaN channel layer on the top of a grain-boundary-free AlN nucleation layer is studied. This is the first time demonstration of a buffer-free epi-structure grown with metal–organic chemical vapor deposition with thin GaN channel thicknesses, ranging from 250 to 150 nm, without any degradation of the structural quality and 2DEG properties. The HEMTs with a gate length of 70 nm exhibit good DC characteristics with peak transconductances of 500 mS mm−1 and maximum saturated drain currents above 1 A mm−1. A thinner GaN channel layer improves 2DEG confinement because of the enhanced effectiveness of the AlN nucleation layer acting as a back-barrier. An excellent drain-induced barrier lowering of only 20 mV V−1 at a VDS of 25 V and an outstanding critical electric field of 0.95 MV cm−1 are demonstrated. Good large-signal performance at 28 GHz with output power levels of 2.0 and 3.2 W mm−1 and associated power-added efficiencies of 56% and 40% are obtained at a VDS of 15 and 25 V, respectively. These results demonstrate the potential of sub-100 nm gate length HEMTs on a buffer-free GaN-on-SiC heterostructure.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1S. Gustafsson, J.-T. Chen, J. Bergsten, U. Forsberg, M. Thorsell, E. Janzén, N. Rorsman, IEEE Trans. Electron Devices 2015, 62, 2162.
- 2N. Maeda, T. Saitoh, K. Tsubaki, T. Nishida, N. Kobayashi, Appl. Phys. Lett. 2000, 76, 3118.
- 3A. Chini, V. Di Lecce, F. Soci, D. Bisi, A. Stocco, M. Meneghini, G. Meneghesso, E. Zanoni, A. Gasparotto, in 2012 IEEE Inter. Reliability Physics Symp. (IRPS), IEEE, Piscataway, NJ 2012, pp. CD. 2.1–CD. 2.4.
- 4K. J. Chen, O. Häberlen, A. Lidow, C. Lin Tsai, T. Ueda, Y. Uemoto, Y. Wu, IEEE Trans. Electron Devices 2017, 64, 779.
- 5A. Jarndal, L. Arivazhagan, D. Nirmal, Int. J. RF Microwave Comput.-Aided Eng. 2020, 30, e22196.
- 6Y. C. Choi, M. Pophristic, H.-Y. Cha, B. Peres, M. G. Spencer, L. F. Eastman, IEEE Trans. Electron Devices 2006, 53, 2926.
- 7J. Bergsten, M. Thorsell, D. Adolph, J.-T. Chen, O. Kordina, E. Ö. Sveinbjörnsson, N. Rorsman, IEEE Trans. Electron Devices 2018, 65, 2446.
- 8X. Li, J. Bergsten, D. Nilsson, Ö. Danielsson, H. Pedersen, N. Rorsman, E. Janzén, U. Forsberg, Appl. Phys. Lett. 2015, 107, 262105.
- 9D. S. Lee, X. Gao, S. Guo, T. Palacios, IEEE Electron Device Lett. 2011, 32, 617.
- 10T. Palacios, A. Chakraborty, S. Heikman, S. Keller, S. DenBaars, U. Mishra, IEEE Electron Device Lett. 2005, 27, 13.
- 11A. Malmros, P. Gamarra, M. Thorsell, H. Hjelmgren, C. Lacam, S. L. Delage, H. Zirath, N. Rorsman, IEEE Trans. Electron Devices 2018, 66, 364.
- 12G. Parish, S. Keller, S. Denbaars, U. Mishra, J. Electron. Mater. 2000, 29, 15.
- 13J. Lu, J.-T. Chen, M. Dahlqvist, R. Kabouche, F. Medjdoub, J. Rosen, O. Kordina, L. Hultman, Appl. Phys. Lett. 2019, 115, 221601.
- 14J.-T. Chen, J. Bergsten, J. Lu, E. Janzén, M. Thorsell, L. Hultman, N. Rorsman, O. Kordina, Appl. Phys. Lett. 2018, 113, 041605.
- 15D.-Y. Chen, A. Malmros, M. Thorsell, H. Hjelmgren, O. Kordina, J.-T. Chen, N. Rorsman, IEEE Electron Device Lett. 2020, 41, 828.
- 16D. Zhang, Z. Li, Q. Yang, D. Peng, C. Li, W. Luo, X. Dong, Appl. Surf. Sci. 2020, 509, 145339.
- 17K. Narang, V. K. Singh, A. Pandey, R. Khan, R. K. Bag, D. Rawal, M. Padmavati, R. Tyagi, R. Singh, J. Mater. Sci. 2022, 57, 5913.
- 18P. Herfurth, D. Maier, L. Lugani, J.-F. Carlin, R. Rosch, Y. Men, N. Grandjean, E. Kohn, IEEE Electron Device Lett. 2013, 34, 496.
- 19F. Medjdoub, M. Zegaoui, B. Grimbert, N. Rolland, P.-A. Rolland, Appl. Phys. Express 2011, 4, 124101.
- 20D.-Y. Chen, A. R. Persson, K. H. Wen, D. Sommer, J. Gruenenpuett, H. Blanck, M. Thorsell, O. Kordina, V. Darakchieva, P. Persson, Semicond. Sci. Technol. 2022, 035011.
- 21J. Bergsten, A. Malmros, M. Tordjman, P. Gamarra, C. Lacam, M. di Forte-Poisson, N. Rorsman, Semicond. Sci. Technol. 2015, 30, 105034.
- 22A. Malmros, P. Gamarra, M. Thorsell, M. A. D. Forteortesson, C. Lacam, M. Tordjman, R. Aubry, H. Zirath, N. Rorsman, Phys. Status Solidi (C) 2014, 11, 924.
- 23Y.-K. Lin, J. Bergsten, H. Leong, A. Malmros, J.-T. Chen, D.-Y. Chen, O. Kordina, H. Zirath, E. Y. Chang, N. Rorsman, Semicond. Sci. Technol. 2018, 33, 095019.
- 24M. Mastro, J. LaRoche, N. Bassim, C. Eddy Jr., Microelectron. J. 2005, 36, 705.
- 25W.-C. Cheng, S. Lei, W. Li, F. Zhao, M. Chan, H. Yu, in 2019 Electron Devices Technology and Manufacturing Conf. (EDTM), Singapore 2019, pp. 374–376.
- 26D. F. Brown, K. Shinohara, A. L. Corrion, R. Chu, A. Williams, J. C. Wong, I. Alvarado-Rodriguez, R. Grabar, M. Johnson, C. M. Butler, IEEE Electron Device Lett. 2013, 34, 1118.
- 27K. Ranjan, S. Arulkumaran, G. I. Ng, S. Vicknesh, Appl. Phys. Express 2014, 7, 044102.
- 28R. Kabouche, J. Derluyn, R. Pusche, S. Degroote, M. Germain, R. Pecheux, E. Okada, M. Zegaoui, F. Medjdoub, in 2018 13th European Microwave Integrated Circuits Conf. (EuMIC), Madrid, Spain 2018, pp. 5–8.
- 29K. Shinohara, D. C. Regan, Y. Tang, A. L. Corrion, D. F. Brown, J. C. Wong, J. F. Robinson, H. H. Fung, A. Schmitz, T. C. Oh, IEEE Trans. Electron Devices 2013, 60, 2982.
- 30B. Hult, M. Thorsell, J.-T. Chen, N. Rorsman, IEEE Electron Device Lett. 2022, 43, 781.
- 31R. Chaudhuri, S. J. Bader, Z. Chen, D. A. Muller, H. G. Xing, D. Jena, Science 2019, 365, 1454.
- 32M. Zvanut, V. Konovalov, H. Wang, W. Mitchel, W. Mitchell, G. Landis, J. Appl. Phys. 2004, 96, 5484.
- 33J. Jenny, S. G. Müller, A. Powell, V. Tsvetkov, H. Hobgood, R. Glass, C. Carter, J. Electron. Mater. 2002, 31, 366.
- 34N. Rorsman, M. Garcia, C. Karlsson, H. Zirath, IEEE Trans. Microwave Theory Tech. 1996, 44, 432.
- 35M. Squillante, M. Marchetti, M. Spirito, L. C. de Vreede, in 2009 73rd ARFTG Microwave Measurement Conf., IEEE, Piscataway, NJ 2009, pp. 1–5.
- 36M. Marchetti, M. J. Pelk, K. Buisman, W. E. Neo, M. Spirito, L. C. de Vreede, IEEE Trans. Microwave Theory Tech. 2008, 56, 2979.
- 37J. Bremer, D. Y. Chen, A. Malko, M. Madel, N. Rorsman, S. E. Gunnarsson, K. Andersson, T. M. Nilsson, P. E. Raad, P. L. Komarov, IEEE Trans. Electron Devices 2020, 67, 1952.
- 38J. Moon, R. Grabar, J. Wong, M. Antcliffe, P. Chen, E. Arkun, I. Khalaf, A. Corrion, J. Chappell, N. Venkatesan, Electron. Lett. 2020, 56, 678.
- 39S. Samis, C. Friesicke, T. Maier, R. Quay, A. Jacob, in 2020 IEEE Asia-Pacific Microwave Conf. (APMC), IEEE, Piscataway, NJ 2020, pp. 260–262.
- 40K. Nakatani, Y. Yamaguchi, M. Hangai, S. Shinjo, in 2019 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symp. (BCICTS), IEEE, Piscataway, NJ 2019, pp. 1–4.
- 41Y. Yamaguchi, J. Kamioka, M. Hangai, S. Shinjo, K. Yamanaka, in 2017 IEEE Compound Semiconductor Integrated Circuit Symp. (CSICS), IEEE, Piscataway, NJ 2017, pp. 1–4.
- 42C. F. Campbell, M.-Y. Kao, S. Nayak, in 2012 IEEE/MTT-S Inter. Microwave Symp. Digest, IEEE, Piscataway, NJ 2012, pp. 1–3.
- 43C. Ng, K. Takagi, T. Senju, K. Matsushita, H. Sakurai, K. Onodera, S. Nakanishi, K. Kuroda, T. Soejima, in 2014 44th European Microwave Conf., Rome, Italy 2014, pp. 1348–1351.
- 44Z. Wen, Y. Xu, Y. Chen, H. Tao, C. Ren, H. Lu, Z. Wang, W. Zheng, B. Zhang, T. Chen, IEEE Trans. Microwave Theory Tech. 2017, 65, 5113.
- 45V. Di Giacomo-Brunel, E. Byk, C. Chang, J. Grünenpütt, B. Lambert, G. Mouginot, D. Sommer, H. Jung, M. Camiade, P. Fellon, in 2018 13th European Microwave Integrated Circuits Conf. (EuMIC), Madrid, Spain 2018, pp. 1–4.
- 46J.-L. Liu, J.-J. Zhu, M.-H. Mi, Q. Zhu, S.-Y. Liu, P.-F. Wang, Y.-W. Zhou, Z.-Y. Zhao, J.-D. Zhou, M. Zhang, Appl. Phys. Lett. 2022, 120, 052101.
- 47T. Inoue, Y. Ando, H. Miyamoto, T. Nakayama, Y. Okamoto, K. Hataya, M. Kuzuhara, IEEE Trans. Microwave Theory Tech. 2005, 53, 74.