Thermolytic Deposition of MoS2 Nanolayer for Si Solar Cell Applications
Suresh Satha
Department of Mechanical Engineering and Research Center of Industrial Technology, Jeonbuk National University, Jeonju, 54896 Republic of Korea
Search for more papers by this authorRajkumar Sahu
Department of Mechanical Engineering and Research Center of Industrial Technology, Jeonbuk National University, Jeonju, 54896 Republic of Korea
Search for more papers by this authorJonghun Mun
Department of Mechanical Engineering and Research Center of Industrial Technology, Jeonbuk National University, Jeonju, 54896 Republic of Korea
Search for more papers by this authorCorresponding Author
Keunjoo Kim
Department of Mechanical Engineering and Research Center of Industrial Technology, Jeonbuk National University, Jeonju, 54896 Republic of Korea
Search for more papers by this authorSuresh Satha
Department of Mechanical Engineering and Research Center of Industrial Technology, Jeonbuk National University, Jeonju, 54896 Republic of Korea
Search for more papers by this authorRajkumar Sahu
Department of Mechanical Engineering and Research Center of Industrial Technology, Jeonbuk National University, Jeonju, 54896 Republic of Korea
Search for more papers by this authorJonghun Mun
Department of Mechanical Engineering and Research Center of Industrial Technology, Jeonbuk National University, Jeonju, 54896 Republic of Korea
Search for more papers by this authorCorresponding Author
Keunjoo Kim
Department of Mechanical Engineering and Research Center of Industrial Technology, Jeonbuk National University, Jeonju, 54896 Republic of Korea
Search for more papers by this authorAbstract
The thermolytic deposition of MoS2 nanolayers for use in Si solar cells is investigated for which a thin MoS2 nanolayer is grown on a crystalline Si substrate by the thermolysis method. The deposited MoS2 nanolayer and Si substrate are annealed and show a transition from an amorphous to a crystalline phase as the annealing temperature increases. The MoS2 (002) crystalline peak at 14.04° appears at an annealing temperature of 450 °C. The heterojunction interface of MoS2/np-Si shows a mixed amorphous and crystalline phase. The Al/MoS2 has better Ohmic contact compared with Al/Si. The MoS2 nanolayer is introduced into the cell structure of a SiNx/a-Si(n)/MoS2/np-Si cell, the cell shows a photoconversion efficiency of 11.47%.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1M. A. Green, Semicond. Sci. Technol. 1993, 8, 1.
- 2K. Yamamoto, K. Yoshikawa, H. Uzu, D. Adachi, Jpn. J. Appl. Phys. 2018, 57, 08RB20.
- 3K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, K. Yamamoto, Nat. Energy 2017, 2, 17032.
- 4K. Yang, H. Liu, S. Wang, W. Li, T. Han, Nanomaterials 2019, 9, 1245.
- 5U. Krishnan, M. Kaur, K. Singh, M. Kumar, A. Kumar, Superlattice Microstruct. 2019, 128, 274.
- 6D. S. Tsai, K. K. Liu, D. H. Lien, M. L. Tsai, C. F. Kang, C. A. Lin, L. J. Li, J. H. He, ACS Nano 2013, 7, 3905.
- 7X. Li, H. Zhu, J. Materiomics 2015, 1, 33.
- 8M. M. Furchi, A. A. Zechmeister, F. Hoeller, S. Wachter, A. Pospischil, T. Mueller, IEEE J. Sel. Top. Quantum Electron. 2017, 23, 106.
- 9S. A. Pawar, D. Kim, A. Kim, J. H. Park, J. C. Shin, T. W. Kim, H. J. Kim, Opt. Mater. 2018, 86, 576.
- 10E. Singh, K. S. Kim, G. Y. Yeom, H. S. Nalwa, ACS Appl. Mater. Interfaces 2017, 4, 3223.
- 11E. W. Lee, C. H. Lee, P. K. Paul, L. Ma, W. D. McCulloch, S. Krishnamoorthy, Y. Wu, A. R. Arehart, S. Rajan, Appl. Phys. Lett. 2015, 107, 103505.
- 12L. Z. Hao, W. Gao, Y. J. Liu, Z. D. Han, Q. Z. Xue, W. Y. Guo, Y. R. Li, Nanoscale 2015, 7, 8304.
- 13J. Ma, H. Bai, W. Zhao, Y. Yuan, K. Zhang, Sol. Energy 2018, 160, 76.
- 14C. B. L. Posadas, Y. Wei, W. Shen, D. Kahr, M. Hohage, L. Sun, Beilstein J. Nanotechnol. 2019, 10, 557.
- 15W. Zhong, S. Deng, K. Wang, G. Li, G. Li, R. Chen, H.-S. Kwok, Nanomaterials 2018, 8, 590.
- 16A. Hasani, Q. V. Le, M. Tekalgne, M. J. Choi, T. H. Lee, S. Y. Kim, H. W. Jang, NPG Asia Mater. 2019, 11, 1.
- 17M. A. Hossain, B. A. Merzougui, F. H. Alharbi, N. Tabet, Sol. Energy Mater. Sol. Cells 2018, 186, 165.
- 18M. Akbarzadeh, M. Zandrahimi, E. Moradpour, Arch. Metall. Mater. 2017, 62, 1741.
- 19D. Kong, H. Wang, J. J. Cha, M. Pasta, K. J. Koski, J. Yao, Y. Cui, Nano Lett. 2013, 13, 1341.
- 20Z. Jin, S. Shin, D. H. Kwon, S. J. Han, Y. S. Min, Nanoscale 2014, 6, 14453.
- 21Y. Lu, X. Yao, J. Yin, G. Peng, P. Cui, X. Xu, RSC Adv. 2015, 5, 7938.
- 22X. Guo, Y. Hou, R. Ren, J. Chen, Nanoscale Res. Lett. 2017, 12, 1.
- 23K. Chang, W. Chen, ACS Nano 2011, 5, 4720.
- 24S. J. Adilla, E. Nurfani, R. Kurniawan, C. Dimas Satrya, Y. Darma, J. Phys. Conf. 2017, 877, 012036.
10.1088/1742-6596/877/1/012036 Google Scholar
- 25S. Liu, X. Zhang, H. Shao, J. Xu, F. Chen, Y. Feng, Mater. Lett. 2012, 73, 223.
- 26S. Chhetri, N. C. Adak, P. Samanta, N. Mandal, T. Kuila, N. C. Murmu, Polym. Bull. 2017, 75, 327.
- 27T. N. Y. Khawula, K. Raju, P. J. Franklyn, I. Sigalas, K. I. Ozoemena, J. Mater. Chem. 2016, 4, 6411.
- 28K. Zhou, S. Jiang, C. Bao, L. Song, B. Wang, G. Tang, Y. Hu, Z. Gui, RSC Adv. 2012, 2, 11695.
- 29W. Feng, L. Chen, M. Qin, X. Zhou, Q. Zhang, Y. Miao, K. Qiu, Y. Zhang, C. He, Sci. Rep. 2015, 5, 17422.
- 30S. L. Matlow, E. L. Ralph, AIP J. Appl. Phys. 1959, 30, 541.
- 31M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen Wu, C. I. Wu, L. J. Li, L. J. Chgen, J. H. He, ACS Nano 2014, 8, 8317.
- 32A. Lamouchi, I. B. Assaker, R. Chtourou, J. Mater. Sci. 2016, 52, 4635.
- 33H. Xu, L. Xin, L. Liu, D. Pang, Y. Jiao, R. Cong, W. Yu, Mater. Lett. 2019, 238, 16.