Impact of In Situ Annealing on the Deep Levels in Ni-Au/AlN/Si Metal–Insulator–Semiconductor Capacitors
Chong Wang
UPM Department, Imec, Kapeldreef 75, Leuven, B-3001 Belgium
Department of Solid State Sciences, Ghent University, Krijgslaan 281 S1, Gent, 9000 Belgium
School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu, 610054 China
Search for more papers by this authorMing Zhao
UPM Department, Imec, Kapeldreef 75, Leuven, B-3001 Belgium
Search for more papers by this authorWei Li
School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu, 610054 China
Search for more papers by this authorCorresponding Author
Eddy Simoen
UPM Department, Imec, Kapeldreef 75, Leuven, B-3001 Belgium
Department of Solid State Sciences, Ghent University, Krijgslaan 281 S1, Gent, 9000 Belgium
Search for more papers by this authorChong Wang
UPM Department, Imec, Kapeldreef 75, Leuven, B-3001 Belgium
Department of Solid State Sciences, Ghent University, Krijgslaan 281 S1, Gent, 9000 Belgium
School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu, 610054 China
Search for more papers by this authorMing Zhao
UPM Department, Imec, Kapeldreef 75, Leuven, B-3001 Belgium
Search for more papers by this authorWei Li
School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu, 610054 China
Search for more papers by this authorCorresponding Author
Eddy Simoen
UPM Department, Imec, Kapeldreef 75, Leuven, B-3001 Belgium
Department of Solid State Sciences, Ghent University, Krijgslaan 281 S1, Gent, 9000 Belgium
Search for more papers by this authorAbstract
The impact of in situ annealing on the electrical properties of AlN/(111) p-type silicon metal–insulator–semiconductor (MIS) capacitors is studied by capacitance–voltage (C–V) and deep-level transient spectroscopy (DLTS). It is demonstrated that the in-diffusion of Al leads to an enhanced free hole concentration close to the interface, which becomes more pronounced for the in situ annealed capacitors. This excess doping in the near-surface region yields a strong capacitance freeze-out above 200 K. At the same time, a higher density of near mid-gap hole traps is found in the p-type Si substrate. The fact that the deep-level parameters (activation energy ET and hole capture cross section σp) change after annealing indicates that different types of Al-related complexes or clusters are formed before and after in situ annealing. This is supported by the different trap filling kinetics observed in both cases: while for the as-deposited samples exponential filling is found, typical for point defects, there is a tendency for logarithmic slow filling for the deep hole traps in the annealed capacitor.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1S. A. Nikishin, N. N. Faleev, V. G. Antipov, S. Francoeur, L. Grave de Peralta, G. A. Seryogin, H. Temkin, T. I. Prokofyeva, M. Holtz, S. N. G. Chu, Appl. Phys. Lett. 1999, 75, 2073.
- 2H. Ishikawa, G.-Y. Zhao, N. Nakada, T. Egawa, T. Jimbo, M. Umeno, Jpn. J. Appl. Phys. 1999, 38, L492.
- 3H. Marchand, L. Zhao, N. Zhang, B. Moran, R. Coffie, U. K. Mishra, J. S. Speck, S. P. DenBaars, J. A. Freitas, J. Appl. Phys. 2001, 89, 7846.
- 4F. Semond, P. Lorenzini, N. Grandjean, J. Massies, Appl. Phys. Lett. 2001, 78, 335.
- 5M. Leys, K. Cheng, J. Derluyn, S. Degroote, M. Germain, G. Borghs, C. A. Taylor, P. Dawson, J. Cryst. Growth 2008, 310, 4888.
- 6K. Cheng, M. Leys, S. Degroote, J. Derluyn, B. Sijmus, P. Favia, O. Richard, H. Bender, M. Germain, G. Borghs, Jpn. J. Appl. Phys. 2008, 47, 1553.
- 7K. Cheng, M. Leys, J. Derluyn, K. Balachander, S. Degroote, M. Germain, G. Borghs, Phys. Status Solidi C 2008, 5, 1600.
- 8A. Dadgar, Phys. Status Solidi B 2015, 252, 1063.
- 9A. Strittmatter, A. Krost, M. Straßburg, V. Türck, D. Bimberg, J. Bläsing, J. Christen, Appl. Phys. Lett. 1999, 74, 1242.
- 10E. Simoen, D. Visalli, M. Van Hove, M. Leys, G. Borghs, A. P. D. Nguyen, A. Stesmans, Phys. Status Solidi A 2012, 209, 1851.
- 11E. Simoen, D. Visalli, M. Van Hove, M. Leys, G. Borghs, J. Phys. D 2011, 44, 475104.
- 12C. Wang, E. Simoen, M. Zhao, W. Li, Semicond. Sci. Technol. 2017, 32, 105002.
- 13S. Huang, B. Shen, F. Xu, F. Lin, Z. Miao, J. Song, L. Lu, L. Cen, L. Sang, Z. Qin, Semicond. Sci. Technol. 2009, 24, 055005.
- 14D. Visalli, M. Van Hove, M. Leys, J. Derluyn, E. Simoen, P. Srivastava, K. Geens, S. Degroote, M. Germain, A. P. D. Nguyen, Appl. Phys. Express 2011, 4, 094101.
- 15H. Yacoub, M. Eickelkamp, D. Fahle, C. Mauder, A. Alam, M. Heuken, H. Kalisch, A. Vescan, in Proc. 73rd Annual Device Research Conf., IEEE, Piscataway 2015, pp. 175–176.
- 16H. Yacoub, D. Fahle, M. Finken, H. Hahn, C. Blumberg, W. Prost, H. Kalisch, M. Heuken, A. Vescan, Semicond. Sci. Technol. 2014, 29, 115012.
- 17J. J. Freedsman, A. Watanabe, Y. Yamaoka, T. Kubo, T. Egawa, Phys. Status Solidi A 2016, 213, 424.
- 18L. Sayadi, G. Iannaccona, O. Häberlen, G. Fiori, M. Tomberger, L. O. Knuuttila, G. Curatola, IEEE Trans. Electron Devices 2018, 65, 51.
- 19W. Zhang, E. Simoen, M. Zhao, J. Zhang, IEEE Trans. Electron Devices 2019.
- 20Y. Yamaoka, K. Kakamu, A. Ubukata, Y. Yano, T. Tabuchi, K. Matsumoto, T. Egawa, Phys. Status Solidi A 2017, 214, 1600843.
10.1002/pssa.201600843 Google Scholar
- 21T. T. Luong, F. Lumbantoruan, Y.-Y. Chen, Y.-T. Ho, Y.-C. Weng, Y.-C. Lin, S. Chang, E.-Y. Chang, Phys. Status Solidi A 2017, 214, 1600944.
10.1002/pssa.201600944 Google Scholar
- 22H. Chandrasekar, K. N. Bhat, M. Rangarajan, S. Raghavan, N. Bhat, Sci. Rep. 2017, 7, 15749.
- 23S. Mirsch, H. Reimer, Phys. Status Solid. A 1972, 11, 631.
- 24M. Morita, S. Isogai, K. Tsubouchi, N. Mikoshiba, Appl. Phys. Lett. 1981, 38, 50.
- 25X. Zhang, D. Walker, A. Saxler, P. Kung, J. Xu, M. Razeghi, Electron. Lett. 1996, 32, 1622.
- 26L. Mohan, B. Roul, S. B. Krupanidhi, J. Appl. Phys. 2018, 124, 205111.
- 27D. V. Lang, J. Appl. Phys. 1974, 45, 3023.
- 28N. M. Johnson, Appl. Phys. Lett. 1979, 34, 802.
- 29K. Yamasaki, M. Yoshida, T. Sugano, Jpn. J. Appl. Phys. 1979, 18, 113.
- 30F. Murray, R. Carin, P. Bogdanski, J. Appl. Phys., San Diego 1986, 60, 3592.
- 31E. Simoen, J. Lauwaert, H. Vrielinck, Semiconductors and Semimetals (Eds: L. Romano, V. Privitera, C. Jagadish), Elsevier 2015, 91, pp. 205–250.
- 32R. L. Marchand, C.-T. Sah, J. Appl. Phys. 1977, 48, 336.
- 33A. Chantre, Appl. Phys. Lett. 1985, 46, 263.
- 34R. Bock, P. P. Altermatt, J. Schmidt, R. Brendel, Semicond. Sci. Technol. 2010, 25, 105007.
- 35C. Sun, F. E. Rougieux, J. Degoulange, R. Einhaus, D. Macdonald, Phys. Status Solidi B 2016, 253, 2079.
- 36J. Schmidt, Appl. Phys. Lett. 2003, 82, 2178.
- 37J. Schmidt, N. Thiemann, R. Bock, R. Brendel, J. Appl. Phys. 2009, 106, 093707.
- 38T. Shi, W.-J. Yin, Y. Wu, M. Al-Jassim, Y. Yan, J. Appl. Phys. 2013, 114, 063520.
- 39H. Hedemann, W. Schröter, J. Phys. III 1997, 7, 1389.
- 40F. Riedel, W. Schröter, Phys. Rev. B 2000 62, 7150.
- 41S. Libertino, S. Coffa, J. L. Benton, Phys. Rev. B 2001, 63, 195206.
- 42M. Seibt, R. Khalil, V. Kveder, W. Schröder, Appl. Phys. A 2009, 96, 235.
- 43J. D. Murphy, P. R. Wilshaw, B. C. Pygall, S. Senkander, R. J. Falster, J. Appl. Phys. 2006, 100, 103531.
- 44T. Ono, E. Asayama, H. Horie, M. Hourai, K. Sueoka, H. Tsuya, G. A. Rozgonyi, J. Electrochem. Soc. 1999, 146, 2239.
- 45T. Ono, A. Romanowski, E. Asayama, H. Horie, K. Sueoka, H. Tsuya, G. A. Rozgonyi, J. Electrochem. Soc. 1999, 146, 3461.
- 46O. De Gryse, P. Clauws, J. Vanhellemont, O. Lebedev, J. Van Landuyt, E. Simoen, C. Claeys. J. Electrochem. Soc. 2004, 151, G598.
- 47S. Sun, W. Sun, Q. Hao, L. Wang, X. Teng, C. Liu, Y. Xu, Mater. Sci. Semicond. Process. 2006, 9, 78.