Cu2O QDs-Apoferritin as a Sensor Media for Neurotransmitters
Ho Kyung Lee
Department of Chemical & Biological Engineering, Gachon University, 1342, Seongnam Street, Seongnam City, 13120 Korea
Search for more papers by this authorJi Hyeon Kim
Department of Chemical & Biological Engineering, Gachon University, 1342, Seongnam Street, Seongnam City, 13120 Korea
Search for more papers by this authorDal Ho Lee
Department of Electronic Engineering, Gachon University, 1342, Seongnam Street, Seongnam City, 13120 Korea
Search for more papers by this authorCorresponding Author
Sang Joon Park
Department of Chemical & Biological Engineering, Gachon University, 1342, Seongnam Street, Seongnam City, 13120 Korea
Search for more papers by this authorHo Kyung Lee
Department of Chemical & Biological Engineering, Gachon University, 1342, Seongnam Street, Seongnam City, 13120 Korea
Search for more papers by this authorJi Hyeon Kim
Department of Chemical & Biological Engineering, Gachon University, 1342, Seongnam Street, Seongnam City, 13120 Korea
Search for more papers by this authorDal Ho Lee
Department of Electronic Engineering, Gachon University, 1342, Seongnam Street, Seongnam City, 13120 Korea
Search for more papers by this authorCorresponding Author
Sang Joon Park
Department of Chemical & Biological Engineering, Gachon University, 1342, Seongnam Street, Seongnam City, 13120 Korea
Search for more papers by this authorAbstract
Quantum dots (QDs) are considered lucrative especially in the area of biosensors because of their peculiar optical properties. Although II–VI semiconductor QDs such as CdSe are the most studied QDs, their inherent toxicity may hinder safe use in in vivo applications, such as biolabeling procedures. In the present work, non-toxic Cu2O QDs-apoferritin are efficiently synthesized in the cavity of cage-shaped apoferritin. The Cu2O QDs are crystalline with an average size of 3 nm. To utilize the Cu2O QDs-apoferritin as a biosensor, the change in photoluminescence (PL) spectrum is investigated by accompanying its conjugation reaction with neurotransmitters. When the Cu2O QDs-apoferritin are conjugated with dopamine, significant fluorescence quenching occurred, and the PL intensity exhibited a linear relationship with dopamine concentration in the range of 0.25–10 × 10–6 m with an R2 of 0.9842. Moreover, the results show that Cu2O QDs-apoferritin have good selectivity for dopamine over gamma-aminobutyric acid, histamine, and ascorbic acid.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1 Y. Li, Y. Jiang, T. Moa, H. Zhou, Y. Li, S. Li, J. Electroanal. Chem. 2016, 767, 84.
- 2 J. Njagi, M. M. Chernov, J. C. Leiter, S. Andreescu, Anal. Chem. 2010, 82, 989.
- 3 A. Abbaspour, A. Khajehzadeh, A. Ghaffarinejad, Analyst 2009, 134, 1692.
- 4 Y. Lin, C. Chen, C. Wang, F. Pu, J. Ren, X. Qu, Chem. Commun. 2011, 47, 1181.
- 5 V. Carrera, E. Sabater, E. Vilanova, M. A. Sogorb, J. Chromatogr. B 2007, 847, 88.
- 6 X. Zhou, A. Wang, C. Yu, S. Wu, J. Shen, ACS Appl. Mater. Interfaces 2015, 7, 11741.
- 7 Y. Long, C. Kong, D. Li, Y. Li, S. Chowdhury, H. Tian, Small 2011, 7, 1624.
- 8 T. H. Le, J. H. Kim, S. J. Park, J. Cryst. Growth 2017, 468, 788.
- 9 I. L. Medintz, M. H. Stewart, S. A. Trammell, K. Susumu, J. B. Delehanty, B. C. Mei, J. S. Melinger, J. B. Blanco-Canosa, P. E. Dawson, H. Mattoussi, Nat. Mater. 2010, 9, 676.
- 10 R. Cui, Y. P. Gu, L. Bao, J. Y. Zhao, B. P. Qi, Z. L. Zhang, Z. Xie, D. W. Pang, Anal. Chem. 2012, 84, 8932.
- 11 R. Sivasubramanian, P. Biji, Mater. Sci. Eng. B 2016, 210, 10.
- 12 G. Ghadimkhani, N. R. De Tacconi, W. Chanmanee, C. Janaky, K. Rajeshwar, Chem. Commun. 2013, 49, 1297.
- 13 S. M. Majhi, P. Rai, B. S. Chon, K. K. Park, Y. T. Yu, ACS Appl. Mater. Interfaces 2014, 6, 7491.
- 14 S. Ni, X. Lv, T. Li, X. Yang, L. Zhang, Electrochim. Acta 2013, 109, 419.
- 15 H. Li, X. Zhang, D. R. Macfarlane, Adv. Energy Mater. 2015, 5, 104177.
- 16 J. Liu, Z. Gao, H. Han, D. Wu, F. Xu, H. Wang, K. Jiang, Chem. Eng. J. 2012, 185, 151.
- 17 X. Zou, H. Fan, Y. Tian, M. Zhang, X. Yan, RSC Adv. 2015, 5, 23401.
- 18 M. Kim, Y. Rho, K. S. Jin, B. Ahn, S. Jung, H. Kim, M. Ree, Biomacromolecules 2011, 12, 1629.
- 19 D. M. Lawson, P. J. Artymiuk, S. J. Yewdall, J. C. Livingstone, A. Treffry, A. Luzzago, S. Levi, P. Arosio, G. Cesareni, C. D. Thomas, W. Shaw, W. P. M. Harrison, Nature 1991, 349, 541.
- 20 P. M. Harrison, J. Mol. Biol. 1959, 1, 69.
- 21 F. A. Fischbach, J. W. Anderegg, J. Mol. Biol. 1965, 14, 458.
- 22 G. T. Ranier, B. Gallois, A. Dautant, B. L. D'Estaintot, G. Pre'cigoux, Acta Crystallogr. Sect. D 1997, 53, 580.
- 23 L. S. Vedula, G. Brannigan, N. J. Economou, J. Xi, M. A. Hall, R. Liu, M. J. Rossi, W. P. Dailey, K. C. Grasty, M. L. Klein, R. G. Eckenhoff, P. J. Loll, J. Biol. Chem. 2009, 284, 24176.
- 24 P. Arosio, T. G. Adelman, J. W. Drysdale, J. Biol. Chem. 1978, 253, 4451.
- 25 S. Stefanini, E. Chiancone, P. Arosio, A. Finazzi-Agro, E. Antonini, Biochemistry 1982, 21, 2293.
- 26 S. Stefanini, S. Cavallo, C. Q. Wang, P. Tataseo, P. Vecchini, A. Giartosio, E. Chiancone, Arch. Biochem. Biophys. 1996, 325, 58.
- 27 R. R. Crichton, C. F. A. Bryce, Biochem. J. 1973, 133, 289.
- 28 W. C. J. Ho, Q. Tay, H. Qi, Z. Huang, J. Li, Z. Chen, Molecules 2017, 22, 677.
- 29 Q. Chao, PhD Thesis, University of South Dakota, May, 2014.
- 30 Z. Wang, P. Huang, O. Jacobson, Z. Wang, Y. Liu, L. Lin, J. Lin, N. Lu, H. Zhang, R. Tian, G. Niu, G. Liu, X. Chen, ACS Nano 2016, 10, 3453.
- 31 N. Ǵalvez, E. Valero, J. M. Doḿınguez-Vera, N. Masciocchi, A. Guagliardi, M. Clemente-Léon, E. Coronado, Nanotechnology 2010, 21, 274017.
- 32 X. Ji, G. Palui, T. Avellini, H. Bin Na, C. Yi, K. L. Knappenberger, Jr., H. Mattoussi, J. Am. Chem. Soc. 2012, 134, 6006.
- 33 H. Lee, S. M. Dellatore, W. M. Miller, P. B. Messersmith, Science 2007, 318, 426.
- 34 A. D. Mc. Naught, A. Wilkinson, Compendium of Chemical Terminology, 2nd ed., Wiley, Hoboken, NJ, USA 1997.
- 35 L. G. Olson, R. H. Uibel, J. L. M. Harris, Appl. Spectrosc. 2004, 12, 1394.
- 36 R. Sivasubramanian, P. Biji, Mater. Sci. Eng. B 2016, 210, 10.
- 37
D. A. C. Brownson,
C. E. Banks,
The Handbook of Graphene Electrochemistry,
Springer,
UK
2014.
10.1007/978-1-4471-6428-9 Google Scholar
- 38 A. Hernández-Laguna, J. M. R. McWeeny, S. Wilson, Quantum Systems in Chemistry and Physics, Springer, USA 2006.