Assessment of heterogeneous electron-transfer rate constants for soluble redox analytes at tetrahedral amorphous carbon, boron-doped diamond, and glassy carbon electrodes
Romana Jarošová
Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
Search for more papers by this authorCorresponding Author
Paula M. De Sousa Bezerra
Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
Corresponding author: e-mail [email protected], Phone: +1 517 353 1090
Present address: Department of Chemistry, Federal University of São Carlos, São Carlos SP-310, Brazil.
Search for more papers by this authorCatherine Munson
Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
Search for more papers by this authorCorresponding Author
Greg M. Swain
Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
Corresponding author: e-mail [email protected], Phone: +1 517 353 1090
Present address: Department of Chemistry, Federal University of São Carlos, São Carlos SP-310, Brazil.
Search for more papers by this authorRomana Jarošová
Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
Search for more papers by this authorCorresponding Author
Paula M. De Sousa Bezerra
Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
Corresponding author: e-mail [email protected], Phone: +1 517 353 1090
Present address: Department of Chemistry, Federal University of São Carlos, São Carlos SP-310, Brazil.
Search for more papers by this authorCatherine Munson
Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
Search for more papers by this authorCorresponding Author
Greg M. Swain
Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
Corresponding author: e-mail [email protected], Phone: +1 517 353 1090
Present address: Department of Chemistry, Federal University of São Carlos, São Carlos SP-310, Brazil.
Search for more papers by this authorAbstract
The electrochemical properties of a nitrogen-incorporated tetrahedral amorphous carbon (ta-C:N) thin-film electrode were investigated. Cyclic voltammetry was used to investigate the background current response as a function of potential, scan rate, and electrolyte composition. Cyclic voltammetry and digital simulation were used to determine the heterogeneous electron-transfer rate constants (ko) for IrCl62−/3−, Fe(CN)63−/4−, ferrocene carboxylic acid, Ru(NH3)63+/2+, and methyl viologen. The results revealed that the background current for the ta-C:N electrode falls between that of BDD and GC. ko values for all the redox analytes at ta-C:N were comparable to the values at BDD and GC. ko values were lower for Fe(CN)63−/4−, 10−3 cm s−1, than for the other four redox systems, 10−2–10−1 cm s−1. ko for Ru(NH3)63+/2+ was insensitive to the electrolyte cation (Li+, Na+, K+, and Cs+) at all three electrodes. In contrast, ko for Fe(CN)63−/4− was sensitive to the cation type with the greatest sensitivity seen for the ta-C:N electrode suggestive of more significant double layer effects. The ta-C:N electrode supports relatively rapid electron transfer for a wide range of redox systems with formal potentials from ca. 0.9 to −1.0 V vs. Ag/AgCl.
References
- 1 I. Svancara, K. Vytras, J. Barek, and J. Zima, Crit. Rev. Anal. Chem. 31, 311–345 ( 2001).
- 2 S. Ranganathan and R. L. McCreery, Anal. Chem. 73, 893–900 ( 2001).
- 3 M. Hupert, A. Muck, J. Wang, J. Stotter, Z. Cvackova, S. Haymond, Y. Show, and G. M. Swain, Diam. Relat. Mater. 12, 1940–1949 ( 2003).
- 4 C. G. Wildgoose, C. E. Banks, H. C. Leventis, and R. G. Compton, Microchim. Acta 152, 187–214 ( 2006).
- 5 N. Yang, G. M. Swain, and X. Jiang, Electroanalysis 28, 27–34 ( 2016).
- 6 R. L. McCreery, Carbon electrodes: Structural effects on electron transfer kinetics, in: Electroanalytical Chemistry, Vol. 17, edited by A. J. Bard ( Marcel Dekker Inc., New York, 1991), pp. 221–374.
- 7 R. Bowling, R. T. Packard, and R. L. McCreery, Langmuir 5, 683–688 ( 1989).
- 8 R. J. Rice, N. M. Pontikos, and R. L. McCreery, J. Am. Chem. Soc. 112, 4617–4622 ( 1990).
- 9 R. J. Rice and R. L. McCreery, Anal. Chem. 61, 1637–1641 ( 1989).
- 10 P. Chen and R. L. McCreery, Anal. Chem. 68, 3958–3965 ( 1996).
- 11 R. G. Compton, J. S. Foord, and F. Marken, Electroanalysis 15, 1349–1363 ( 2003).
- 12 C. E. Nebel, B. Rezek, D. Shin, and H. Uetsuka, J. Phys. D, Appl. Phys. 40, 6443–6466 ( 2007).
- 13 K. Peckova, J. Musilova, and J. Barek, Crit. Rev. Anal. Chem. 39, 148–172 ( 2009).
- 14 Y. Einaga, J. S. Foord, and G. M. Swain, MRS Bull. 39, 525–532 ( 2014).
- 15 J. V. Macpherson, Phys. Chem. Chem. Phys. 17, 2935–2949 ( 2015).
- 16 X. Yang, L. Haubold, G. DeVivo, and G. M. Swain, Anal. Chem. 84, 6240–6248 ( 2012).
- 17 J. Stotter, J. Zak, Z. Behler, Y. Show, and G. M. Swain, Anal. Chem. 74, 5924–5930 ( 2002).
- 18 S. Haymond, J. K. Zak, Y. Show, J. E. Butler, G. T. Babcock, and G. M. Swain, Anal. Chim. Acta 500, 137–144 ( 2003).
- 19 J. Stotter, Y. Show, S. Wang, and G. M. Swain, Chem. Mater. 17, 4880–4888 ( 2005).
- 20
N. Wächter,
C. A. Munson,
R. Jarosová,
I. Berkun,
T. Hogan,
R. Rocha-Filo, and
G. M. Swain,
ACS Appl. Mater. Interf. (
2016), DOI: 10.1021/acsami.6b02467.
10.1021/acsami.6b02467 Google Scholar
- 21 J. K. Zak, J. E. Butler, and G. M. Swain, Anal. Chem. 73, 908–914 ( 2001).
- 22 Y. Dai, D. A. Proshlyakov, J. K. Zak, and G. M. Swain, Anal. Chem. 79, 7526–7533 ( 2007).
- 23 Y. Dai, D. A. Proshlyakov, and G. M. Swain, Electrochim. Acta 197, 129–138 ( 2016).
- 24 G. M. Swain, Electrically conducting diamond thin-Films: Advanced electrode materials for electrochemical technologies, in: Electroanalytical Chemistry, Vol. 22, edited by A. J. Bard and I. Rubinstein ( Marcel Dekker, New York, 2004), pp. 181–277.
- 25 F. G. Celii and J. E. Butler, Ann. Rev. Phys. Chem. 42, 643–684 ( 1991).
- 26 O. A. Williams, Diam. Relat. Mater. 20, 621–640 ( 2011).
- 27 D. M. Gruen, Annu. Rev. Mater. Sci. 29, 211–259 ( 1999).
- 28 J. E. Butler and A. V. Sumant, Chem. Vapor Depos. 14, 145–160 ( 2008).
- 29 M. C. Granger and G. M. Swain, J. Electrochem. Soc. 146, 4551–4558 ( 1999).
- 30 M. C. Granger, M. Witek, J. S. Xu, J. Wang, M. Hupert, A. Hanks, M. D. Koppang, J. E. Butler, G. Lucazeau, M. Mermoux, and G. M. Swain, Anal. Chem. 72, 3793–3804 ( 2000).
- 31 A. E. Fisher, Y. Show, and G. M. Swain, Anal. Chem. 76, 2553–2560 ( 2004).
- 32 S. Wang, V. M. Swope, J. E. Butler, T. Feygelson, and G. M. Swain, Diam. Relat. Mater. 18, 669–677 ( 2009).
- 33 Y. Show, M. A. Witek, P. Sonthalia, and G. M. Swain, Chem. Mater. 15, 879–888 ( 2003).
- 34 Q. Y. Chen, D. M. Gruen, A. R. Krauss, T. D. Corrigan, M. Witek, and G. M. Swain, J. Electrochem. Soc. 148, E44–E51 ( 2001).
- 35 D. Hamblin, J. Qiu, L. Haubold, and G. M. Swain, Anal. Methods 7, 4481–4485 ( 2015).
- 36 J. J. Lee, B. Miller, X. Shi, R. Kalish, and K. A. Wheeler, J. Electrochem. Soc. 148, C183–C190 ( 2001).
- 37 D. Sopchak, B. Miller, R. Kalish, Y. Avygal, and X. Shi, Electroanalysis 14, 473–478 ( 2002).
- 38 R. F. Brocenschi, R. C. Rocha-Filho, L. Li, and G. M. Swain, J. Electroanal. Chem. 712, 207–214 ( 2014).
- 39 A. Zeng, V. F. Neto, J. J. Gracio, and Q. H. Fan, Diam. Relat. Mater. 43, 12–22 ( 2014).
- 40 T. Laurila, V. Protopopova, S. Rhode, S. Saino, T. Palomaki, M. Moran, J. Feliu, and J. Koskinen, Diam. Relat. Mater. 49, 62–71 ( 2014).
- 41 K. S. Yoo, B. Miller, R. Kalish, and X. Shi, Electrochem. Solid-State Lett. 2, 233–235 ( 1999).
- 42 N. C. Yee, Q. F. Shi, W. D. Cai, D. A. Scherson, and B. Miller, Electrochem. Solid-State Lett. 4, E42–E44 ( 2001).
- 43 D. R. Mckenzie, D. Muller, B. A. Pailthorpe, Z. H. Wang, E. Kravtchinskaia, D. Segal, P. B. Lukins, P. D. Swift, P. J. Matu, G. Amaratunga, P. H. Gaskell, and A. Saeed, Diam. Relat. Mater. 1, 51–59 ( 1991).
- 44 V. S. Veerasamy, J. Yuan, G. A. J. Amaratunga, W. I. Milne, K. W. R. Gilkes, M. Weiler, and L. M. Brown, Phys. Rev. B 48, 17954–17959 ( 1993).
- 45 M. Chhowalla, J. Robertson, C. W. Chen, S. R. P. Silva, C. A. Davis, G. A. J. Amaratunga, and W. I. Milne, J. Appl. Phys. 81, 139–145 ( 1997).
- 46 O. Niwa, J. Jai, Y. Sato, D. Kato, R. Kurita, K. Maruyama, K. Suzuki, and S. Hirono, J. Am. Chem. Soc. 128, 7144–7145 ( 2006).
- 47 T. Kamata, D. Kato, S. Hirone, and O. Niwa, Anal. Chem. 85, 9845–9851 ( 2013).
- 48 T. Kamata, D. Kato, H. Ida, and O. Niwa, Diam. Relat. Mater. 49, 25–32 ( 2014).
- 49 T. Kamata, D. Kato, S. Umemura, and O. Niwa, Anal. Sci. 31, 651–656 ( 2015).
- 50 H.-J. Scheibe and B. Schultrich, Thin Solid Films 246, 92–102 ( 1994).
- 51 D. Drescher, J. Koskinen, H.-J. Scheibe, and A. Mensch, Diam. Relat. Mater. 7, 1375–1380 ( 1998).
- 52 M. C. Granger, M. Witek, J. S. Xu, J. Wang, M. Hupert, A. Hanks, M. D. Koppang, J. E. Butler, G. Lucazeau, M. Mermoux, and G. M. Swain, Anal. Chem. 72, 3793–3804 ( 2000).
- 53 S. Ranganthan, T.-C. Kuo, and R. L. McCreery, Anal. Chem. 71, 3574–3580 ( 1999).
- 54 P. Szirmai, T. Pichler, O. A. Williams, S. Mandal, C. Bäuerle, and F. Simon, Phys. Status Solidi B 249, 2656–2659 ( 2012).
- 55 P. W. May, W. J. Ludlow, M. Hannaway, P. J. Heard, J. A. Smith, and K. N. Rosser, Diam. Relat. Mater. 17, 105–117 ( 2008).
- 56 E. Bourgeois, E. Bustarret, P. Achatz, F. Omnès, and X. Blasé, Phys. Rev. B 74, 094509 ( 2006).
- 57 M. Bernard, C. Baron, and A. Deneuville, Diam. Relat. Mater. 13, 896–899 ( 2004).
- 58 V. Sidorov and E. Ekimov, Diam. Relat. Mater. 19, 351–357 ( 2010).
- 59 A. C. Ferrari and J. Robertson, Phys Rev. B 63, 121405 ( 2001).
- 60 P. Gonon, E. Gheeraert, A. Deneuville, and F. Fontaine, J. Appl. Phys. 78, 7059–7062 ( 1995).
- 61 A. Deneuville, C. Baron, S. Ghodbane, and C. Agnès, Diam. Relat. Mater. 16, 915–920 ( 2007).
- 62 A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095–14107 ( 2000).
- 63 K. W. R. Gilkes, S. Prawer, K. W. Nugent, J. Robertson, H. S. Sands, Y. Lifshitz, and X. Shi, J. Appl. Phys. 87, 7283–7289 ( 2000).
- 64 J. S. Xu, Q. Y. Chen, and G. M. Swain, Anal. Chem. 70, 3146–3154 ( 1998).
- 65 Q. Y. Chen and G. M. Swain, Langmuir 14, 7017–7026 ( 1998).
- 66 D. T. Fagan, I.-F. Hu, and T. Kuwana, Anal. Chem. 57, 2759–2763 ( 1985).
- 67 G. M. Swain and R. Ramesham, Anal. Chem. 65, 345–351 ( 1993).
- 68 G. Gerhardt and R. N. Adams, Anal. Chem. 54, 2618–2620 ( 1982).
- 69 J. E. Baur and R. M. Wightman, J. Electroanal. Chem. Interface Electrochem. 305, 73–81 ( 1991).
- 70 R. S. Nicholson, Anal. Chem. 37, 1351–1355 ( 1965).
- 71 D. Y. Kim, J. Wang, J. Yang, H. W. Kim, and G. M. Swain, J. Phys. Chem. C 115, 10026–10032 ( 2011).