Improvement in thermoelectric performance of In6Se7 by substitution of Sn for In
Min Cheng
Materials Science and Engineering College, Taiyuan University of Technology, Taiyuan, 030024 P.R. China
School of Materials, Ningbo University of Technology, Ningbo, 315016 P.R. China
Search for more papers by this authorCorresponding Author
Shaoping Chen
Materials Science and Engineering College, Taiyuan University of Technology, Taiyuan, 030024 P.R. China
Corresponding author: e-mail [email protected], Phone: +86-574-87080504, Fax: +86-574-87080504
e-mail [email protected]
Search for more papers by this authorZhengliang Du
School of Materials, Ningbo University of Technology, Ningbo, 315016 P.R. China
Search for more papers by this authorXianglian Liu
School of Materials, Ningbo University of Technology, Ningbo, 315016 P.R. China
Search for more papers by this authorCorresponding Author
Jiaolin Cui
School of Materials, Ningbo University of Technology, Ningbo, 315016 P.R. China
Corresponding author: e-mail [email protected], Phone: +86-574-87080504, Fax: +86-574-87080504
e-mail [email protected]
Search for more papers by this authorMin Cheng
Materials Science and Engineering College, Taiyuan University of Technology, Taiyuan, 030024 P.R. China
School of Materials, Ningbo University of Technology, Ningbo, 315016 P.R. China
Search for more papers by this authorCorresponding Author
Shaoping Chen
Materials Science and Engineering College, Taiyuan University of Technology, Taiyuan, 030024 P.R. China
Corresponding author: e-mail [email protected], Phone: +86-574-87080504, Fax: +86-574-87080504
e-mail [email protected]
Search for more papers by this authorZhengliang Du
School of Materials, Ningbo University of Technology, Ningbo, 315016 P.R. China
Search for more papers by this authorXianglian Liu
School of Materials, Ningbo University of Technology, Ningbo, 315016 P.R. China
Search for more papers by this authorCorresponding Author
Jiaolin Cui
School of Materials, Ningbo University of Technology, Ningbo, 315016 P.R. China
Corresponding author: e-mail [email protected], Phone: +86-574-87080504, Fax: +86-574-87080504
e-mail [email protected]
Search for more papers by this authorAbstract
In this work we have observed a remarkable improvement in the thermoelectric (TE) performance of In6–xSnxSe7 (ZT = ∼0.28 at x = 0.1, 833 K) compared to that of pristine In6Se7 (ZT = 0.015 at 640 K). This improvement is mainly attributed to the creation of active donor defects SnIn3+ as Sn(4+) is energetically favorable to In+ sites. Although Sn (2+), which generates a defect SnIn− as an acceptor when it is incorporated into the In3+ sites, has a negative effect on the transport properties, the counter effect from Sn(4+) and Sn(2+) suggests that In6Se7-based alloys are prospectively good thermoelectric candidates if their chemical compositions are well optimized.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
pssa201600003-sup-0001-SupData-S1.pdf1.2 MB |
Figure S1. The magnetic field dependence of the Hall coefficient in In6-xSnxSe7 (x=0, 0.1, 0.3, 0.5, 0.7). Figure S2. EPMA mapping of three elements on polished In5.7Sn0.3Se7 surface (a) In, (b) Se, (c) Sn and (d) Energy dispersive X-ray spectrum, (e) Back-scattered SEM image along the pressing direction, (f) Back-scattered SEM image perpendicular to the pressing direction. Figure S3. XPS spectra of (a) In 3d, (b) Se3d, and (c) Sn 3d for In6-xSnxSe7. Figure S4. The thermoelectric properties of the sample (x=0.1) as a function of temperature for different measurements. Figure S5. Experimentally determined bandgap Eg of In6-xSnxSe7. An upper left insert is the absorption coefficient spectra A (hν), A is the absorption coefficient, hν is the photon energy, and low right insert is the full relations of (Ahν)2 = (hν − Eg). Figure S6. (a) The heat capacities (Cp) and (b) thermal diffusivities (λ) as a function of Sn content Table S1. The chemical compositions (relative number of moles) identified using EPMA for In 6-xSnxSe7 (x=0, 0.3) (taken from a mapping) |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) K. Biswas, J. He, I. D. Blum, C. I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, and M. G. Kanatzidis, Nature 489, 414 ( 2012); b) B. Poudel, Q. Hao, Y. Ma, Y. G. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 ( 2008); c) W. Xie, J. He, H. J. Kang, X. Tang, S. Zhu, M. Laver, S. Wang, J. R. D. Copley, C. M. Brown, Q. Zhang, and T. M. Tritt, Nano Lett. 10, 3283 ( 2010).
- 2(a) Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G. J. Snyder, Nature 473, 66 ( 2011); (b) J. Rhyee, K. H. Lee, S. M. Lee, E. Cho, S. II. Kim, E. Lee, Y. S. Kwon, J. H. Shim, and G. Kotlia, Nature 459, 965 ( 2009); (c) J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. J. Snyder, Science 321, 554 ( 2008).
- 3a) S. Walia, R. Weber, S. Balendhran, D. Yao, J. T. Abrahamson, S. Zhuiykov, M. Bhaskaran, S. Sriram, M. S. Strano, and K. Kalantar-zadeh, Chem. Commun. 48, 7462 ( 2012); b) S. Walia, S. Balendhran, P. Yi, D. Yao, S. Zhuiykov, M. Pannirselvam, R. Weber, M. S. Strano, M. Bhaskaran, S. Sriram, and K. Kalantar-zadeh, J. Phys. Chem. C 117, 9137 ( 2013); c) S. Walia, R. Weber, S. Sriram, M. Bhaskaran, K. Latham, S. Zhuiykov, and K. Kalantar-zadeh, Energy Environ. Sci. 4, 3558 ( 2011); d) S. Walia, R. Weber, K. Latham, P. Petersen, J. T. Abrahamson, M. S. Strano, and K. Kalantar-zadeh, Adv. Funct. Mater. 21, 2072 ( 2011); e) S. Shimizu, W. Choi, J. T. Abrahamson, and M. S. Strano, Phys. Status Solidi B 248, 2445 ( 2011); f) K. Y. Lee, H. Hwang, and W. Choi, ACS Appl. Mater. Interf. 6, 15575 ( 2014); g) J. T. Abrahamson, B. Sempere, M. P. Walsh, J. M. Forman, F. Sen, S. Sen, S. G. Mahajan, G. L. Paulus, Q. H. Wang, W. Choi, and M. S. Strano, ACS Nano 7, 6533 ( 2013).
- 4 G. Han, Z. Chen, J. Drennan, and J. Zou, Small 10, 2747 ( 2014).
- 5 Y. Luo, J. Yang, G. Li, M. Liu, Y. Xiao, L. Fu, W. Li, P. Zhu, J. Peng, S. Gao, and J. Zhang, Adv. Energy Mater. 4, 1300599 ( 2014).
- 6 J. Cui, L. Wang, Z. Du, P. Ying, and Y. Deng, J. Mater. Chem. C 3, 9069 ( 2015).
- 7(a) R. Walther and H. J. Deiseroth, Z. f. Kristallogr. 210, 359 ( 1995); (b) J. H. C. Hogg, Acta Crystallogr. B 27, 1630 ( 1971).
- 8 A. F. El-Deeb, H. S. Metwally, and H. A. Shehata, J. Phys. D: Appl. Phys. 41, 125305 ( 2008).
- 9
A. A. Al-Ghamdi,
JKAU: Sci.
19, 157 (
2007).
10.4197/Sci.19-1.12 Google Scholar
- 10 T. Ben Nasr, H. Ben Abdallah, and R. Bennaceur, Physica B 405, 3427 ( 2010).
- 11 T. Colakoğlu and M. Parlak, Appl. Surf. Sci. 254, 1569 ( 2008).
- 12 K. C. Lukas, W. S. Liu, G. Joshi, M. Zebarjadi, M. S. Dresselhaus, Z. F. Ren, G. Chen, and C. P. Opeil, Phys. Rev. B 85, 205410 ( 2012).
- 13 J. L. Cui, H. F. Xue, and W. J. Xiu, Mater. Sci. Eng. B 135, 44 ( 2006).
- 14 J. F. Moulder and J. Chastain, Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data ( Perkin-Elmer Corporation, Physical Electronics Division, Eden Prairie, Minnesota, 1992), p. 92.
- 15a) G. Pang, H. Jin, Y. Li, Q. Wan, Y. Sun, S. Feng, and A. Gedanken, J. Mater. Sci. 41, 1429 ( 2006); b) M. Huang, Z. Hameiri, A. G. Aberle, and T. Mueller, Vacuum 121, 187 ( 2015).
- 16 H. Lu, B. Lin, S. Chen, and P. Shen, J. Phys. Chem. C 115, 24577 ( 2011).
- 17a) Y. Hosogi, Y. Shimodaira, H. Kato, H. Kobayashi, and A. Kudo, Chem. Mater. 20, 1299 ( 2008); b) D. Maestre, A. Cremades, L. Gregoratti, and J. Piqueras, J. Phys. Chem. C 114, 3411 ( 2010).
- 18 A. V. Naumkin, A. K. Vass, S. W. Gaarenstroom, and C. J. Powell, Distribution by the Measurement Service Divisions of the National Institute of Standards and Technology (NIST), Material Measurement Laboratory (MML), U.S. Department of Commerce, 9, 2012.
- 19 J. Themlin, M. Chtaib, L. Henrard, P. Lambin, J. Darville, and J. Gilles, Phys. Rev. B 46, 2460 ( 1992).
- 20 N. H. Heo, J. S. Park, Y. J. Kim, W. T. Lim, S. W. Jung, and K. Seff, J. Phys. Chem. B 107, 1120 ( 2003).
- 21 H. Zhou and J. Park, Phys. Status Solidi A 212, 414 ( 2015).
- 22 Z Lin, L. Chen, L. Wang, J. Zhao, and L. Wu, Adv. Mater. 25, 4800 ( 2013).
- 23 J. Rhyee, K. Ahn, K. H. Lee, H. S. Ji, and J. Shim, Adv. Mater. 23, 2191 ( 2011).
- 24 G. J. Snyder and E. S. Toberer, Nature Mater. 7, 105 ( 2008).
- 25 N. P. Gavaleshko, M. S. Kitsa, A. I. Savchuk, and R. N. Simchuk, Sov. Phys. Semicond. 14, 822 ( 1980), (English transl.).
- 26 M. Cutler, J. F. Leavy, and R. L. Fitzpatrick, Phys. Rev. 133, A1143 ( 1964).