Piezotronic-based magnetoelectric sensor: Fabrication and response
Jorit Gröttrup
Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
Search for more papers by this authorCorresponding Author
Sören Kaps
Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
Corresponding author: e-mail [email protected], Phone: +49 431 880 6116, Fax: + 49 431 880 6124
e-mail [email protected]
e-mail [email protected]
Search for more papers by this authorJürgen Carstensen
Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
Search for more papers by this authorDaria Smazna
Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
Search for more papers by this authorCorresponding Author
Yogendra Kumar Mishra
Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
Corresponding author: e-mail [email protected], Phone: +49 431 880 6116, Fax: + 49 431 880 6124
e-mail [email protected]
e-mail [email protected]
Search for more papers by this authorAndré Piorra
Inorganic Functional Materials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
Search for more papers by this authorChristine Kirchhof
Inorganic Functional Materials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
Search for more papers by this authorEckhard Quandt
Inorganic Functional Materials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
Search for more papers by this authorCorresponding Author
Rainer Adelung
Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
Corresponding author: e-mail [email protected], Phone: +49 431 880 6116, Fax: + 49 431 880 6124
e-mail [email protected]
e-mail [email protected]
Search for more papers by this authorJorit Gröttrup
Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
Search for more papers by this authorCorresponding Author
Sören Kaps
Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
Corresponding author: e-mail [email protected], Phone: +49 431 880 6116, Fax: + 49 431 880 6124
e-mail [email protected]
e-mail [email protected]
Search for more papers by this authorJürgen Carstensen
Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
Search for more papers by this authorDaria Smazna
Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
Search for more papers by this authorCorresponding Author
Yogendra Kumar Mishra
Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
Corresponding author: e-mail [email protected], Phone: +49 431 880 6116, Fax: + 49 431 880 6124
e-mail [email protected]
e-mail [email protected]
Search for more papers by this authorAndré Piorra
Inorganic Functional Materials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
Search for more papers by this authorChristine Kirchhof
Inorganic Functional Materials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
Search for more papers by this authorEckhard Quandt
Inorganic Functional Materials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
Search for more papers by this authorCorresponding Author
Rainer Adelung
Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
Corresponding author: e-mail [email protected], Phone: +49 431 880 6116, Fax: + 49 431 880 6124
e-mail [email protected]
e-mail [email protected]
Search for more papers by this authorAbstract
In the present work, magnetoelectric-piezotronic devices have been fabricated using exceptionally long (mm long) ZnO nano- and microneedles grown by the simple and versatile flame transport synthesis approach. The piezotronic response to an applied magnetic field has been investigated for state of the art magnetoelectric (ME) sensors containing AlN and PZT as piezoelectric phase as well as sensors based on ZnO nano- and microneedles, which are among the best described materials in terms of piezotronic applications. The current voltage (I–V) characteristics of the fabricated electronic sensor devices have been measured to understand the individual contributions of the piezoelectric and semiconducting properties. The experimentally obtained correlations between the piezotronic effect and the I–V responses have been fitted using appropriate theoretical models which have been discussed in detail. The current observations demonstrate that ME based piezotronic sensing devices have complementary roles, on one hand, the ME principle helps to get a better understanding of the piezotronic nature of quasi one dimensional (Q1D) ZnO nano- and microneedles, and on the other hand, the integration of a piezotronic effect leads to an improved sensitivity of the ME devices and hence to a better quality of ME sensors.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
pssa201532924-sup-0001-SuppFig-S1.pdf124.3 KB |
Figure S1. ME characterization device. The measurement box (1) is placed on a sand bed (2) which acts as the counter top for an air damped table (3). The AC power supply (4), DC power supply (5), lock-in amplifier (6) and the controlling computer are separated from the damped table. Figure S2. Magnetoelectric measurement device consisting of a magnetic shielding (1) two pairs of coils (6 and 7) with the corresponding coaxial connectors (8 and 9) and an electrical shielding cylinder (5). The magnetoelectric sensor (3) is mounted inside an ABS box (4) which can be closed with a cap (2) to allow evacuation of the box through a flexible hose (11). The sensor signal can be measured at a coaxial connector (10). Figure S3. Calibration curves for the DC and AC coils of the ME setup. The gain factor was measured at different positions inside the shielding relative to the end of the shielding cylinder. Figure S4. AC calibration curves showing an increase in shielding for increasing frequencies. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, and Z. L. Wang, Nature Nanotechnol. 5, 366–373 ( 2010).
- 2 M. Alexe, S. Senz, M. A. Schubert, D. Hesse, and U. Gösele, Adv. Mater. 20, 4021–4026 ( 2008).
- 3 Z. L. Wang, Mater. Today 10, 20–28 ( 2007).
- 4 R. He and P. Yang, Nature Nanotechnol. 1, 42–46 ( 2006).
- 5 J. X. Cao, X. G. Gong, and R. Q. Wu, Phys. Rev. B 75, 233302 ( 2007).
- 6 Y. Kanda, Sens. Actuators A 28, 83–91 ( 1991).
- 7 C. S. Smith, Phys. Rev. B 94, 42 ( 1954).
- 8 J. Zhou, P. Fei, Y. Gu, W. Mai, Y. Gao, R. Yang, G. Bao, and Z. L. Wang, Nano Lett. 8, 3973–3977 ( 2008).
- 9 T.-K. Kang, Appl. Phys. Lett. 100, 163501 ( 2012).
- 10 Y. Zhang, Y. Liu, and Z. L. Wang, Adv. Mater. 23, 3004–3013 ( 2011).
- 11 R. Zhu and R. Yang, Nanotechnology 25, 345702 ( 2014).
- 12 Z. L. Wang, Adv. Mater. 24, 4632–4646 ( 2012).
- 13 J. Zhai, Z. Xing, S. Dong, J. Li, and D. Viehland, Appl. Phys. Lett. 88, 062510 ( 2006).
- 14 S. Zabel, C. Kirchhof, E. Yarar, D. Meyners, E. Quandt, and F. Faupel, Appl. Phys. Lett. 107, 152402 ( 2015).
- 15 J. Zhou, Y. Gu, P. Fei, W. Mai, Y. Gao, R. Yang, G. Bao, and Z. L. Wang, Nano Lett. 8, 3035–3040 ( 2008).
- 16 X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, and Z. L. Wang, Nano Lett. 6, 2768–2772 ( 2006).
- 17 W. Wu and Z. L. Wang, Nano Lett. 11, 2779–2785 ( 2011).
- 18 R. Baraki, N. Novak, M. Hofstätter, P. Supancic, J. Rödel, and T. Frömling, J. Appl. Phys. 118, 085703 ( 2015).
- 19 Y. K. Mishra, S. Kaps, A. Schuchardt, I. Paulowicz, X. Jin, D. Gedamu, S. Freitag, M. Claus, S. Wille, A. Kovalev, S. N. Gorb, and R. Adelung, Part. Part. Syst. Charact. 30, 775–783 ( 2013).
- 20 S. Hrkac, M. Abes, C. Koops, C. Krywka, M. Müller, S. Kaps, R. Adelung, J. McCord, E. Lage, and E. Quandt, Appl. Phys. Lett. 103, 123111 ( 2013).
- 21 R. Jahns, A. Piorra, E. Lage, C. Kirchhof, D. Meyners, J. L. Gugat, M. Krantz, M. Gerken, R. Knöchel, and E. Quandt, J Am. Ceram. Soc. 96, 1673–1681 ( 2013).
- 22 X. Zhang, F. Hai, T. Zhang, C. Jia, X. Sun, L. Ding, and W. Zhang, Microelectron. Eng. 93, 5–9 ( 2012).
- 23 J. Van Suchtelen, Philips Res. Rep. 27, 28–37 ( 1972).
- 24 J. Van Den Boomgaard, A. M. J. G. Van Run, and J. V. Suchtelen, Ferroelectrics 10, 295–298 ( 1976).
- 25 Y. Wang, D. Gray, D. Berry, J. Gao, M. Li, J. Li, and D. Viehland, Adv. Mater. 23, 4111–4114 ( 2011).
- 26 S. Marauska, R. Jahns, C. Kirchhof, M. Claus, E. Quandt, R. Knöchel, and B. Wagner, Sens. Actuators A 189, 321–327 ( 2013).
- 27 L. J. Brillson and Y. Lu, J. Appl. Phys. 109, 121301 ( 2011).
- 28 H.-K. Kim, K.-K. Kim, S.-J. Park, T.-Y. Seongb, and I. Adesida, J. Appl. Phys. 94, 4225 ( 2003).
- 29 H.-K. Kim, T.-Y. Seong, K.-K. Kim, S.-J. Park, Y. S. Yoon, and I. Adesida, Jpn. J. Appl. Phys. 43, 976 ( 2004).
- 30 H.-K. Kim and J.-M. Lee, Superlattices Microstruct. 42, 255–258 ( 2007).
- 31 K. Ishaque, Z. Salam, and H. Taheri, Sol. Energy Mater. Sol. Cells 95, 586–594 ( 2011).
- 32 A. M. Humada, M. Hojabri, S. Mekhilef, and H. M. Hamada, Renew. Sustain. Energy Rev. 56, 494–509 ( 2016).
- 33 A. Cuevas, Energy Procedia 55, 53–62 ( 2014).
- 34 M. L. Alex, G. M. Thierry, S. W. Alex, M. K. Despoina, M. R. Quentin, B. W. Michael, K. Jürgen, and P. W. Steve, Nanotechnology 24, 435706 ( 2013).
- 35 S. A. Ansari, M. M. Khan, S. Kalathil, A. Nisar, J. Lee, and M. H. Cho, Nanoscale 5, 9238–9246 ( 2013).
- 36 M. W. Allen and S. M. Durbin, Appl. Phys. Lett. 92, 122110 ( 2008).