Observations of stress accumulation and relaxation in solid-state lithiation and delithiation of suspended Si microcantilevers
Corresponding Author
Joseph J. Brown
Department of Mechanical Engineering, University of Colorado – Boulder, 427 UCB, Boulder, CO, 80309-0427 USA
Corresponding author: e-mail [email protected], Phone: +1 303 492 7151, Fax: +1 303 492 3498
Search for more papers by this authorSe-Hee Lee
Department of Mechanical Engineering, University of Colorado – Boulder, 427 UCB, Boulder, CO, 80309-0427 USA
Search for more papers by this authorJianliang Xiao
Department of Mechanical Engineering, University of Colorado – Boulder, 427 UCB, Boulder, CO, 80309-0427 USA
Search for more papers by this authorZhuangchun Wu
School of Materials Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei St., Nanjing, 210094 P.R. China
Search for more papers by this authorCorresponding Author
Joseph J. Brown
Department of Mechanical Engineering, University of Colorado – Boulder, 427 UCB, Boulder, CO, 80309-0427 USA
Corresponding author: e-mail [email protected], Phone: +1 303 492 7151, Fax: +1 303 492 3498
Search for more papers by this authorSe-Hee Lee
Department of Mechanical Engineering, University of Colorado – Boulder, 427 UCB, Boulder, CO, 80309-0427 USA
Search for more papers by this authorJianliang Xiao
Department of Mechanical Engineering, University of Colorado – Boulder, 427 UCB, Boulder, CO, 80309-0427 USA
Search for more papers by this authorZhuangchun Wu
School of Materials Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei St., Nanjing, 210094 P.R. China
Search for more papers by this authorAbstract
Motion of microfabricated cantilevers is demonstrated as an in situ technique for mechanical characterization during the solid-state electrochemical lithiation and delithiation of silicon. The composite cantilevers consist of suspended single-crystal silicon cantilevers, onto which LiAlF4 electrolyte, Li2WO4 lithium reservoir, and Ag electrode layers are deposited. Using white light interferometry, the cantilevers are observed to deflect downward as the silicon is charged with lithium (lithiation), but the cantilevers experience little motion as the lithium is discharged (delithiation). An analytical cantilever-bending model featuring a moving phase boundary is developed to describe motion of the beams and explore stress profiles within the lithiated layer. Cantilever deflection during lithiation allows comparison to several models for stress within the LiSix layer. Specifically, a purely elastic model overestimates cantilever motion, as does a plastic bending model. The observed cantilever deflection distances are appropriate for a model of gradual accumulation of stress during charging, best fit with an exponential function indicating compressive stress of more than 1 GPa at the Si-LiSix phase boundary. After both charge and discharge cycles, the cantilevers relax upwards, indicating that this material system experiences time-dependent stress relaxation and continues to restructure itself after both lithiation and delithiation.
During lithiation (black lines), microcantilevers are observed to deflect downward with increasing charge, while similar behavior is not observed during delithiation (gray lines). This experimental technique was demonstrated using a model solid electrolyte system supported on Si microcantilevers, and resulted in observation of stress relaxation without current flow.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
pssa201532671-sup-0001-SupData-S1.pdf1.1 MB |
Figure S1. Cantilever height evolution during Charge 2 for the 200 μm cantilevers. Images are arranged in rows 1 through 5 corresponding to points 1 through 5 collected from the start through the finish of the Charge 2 test. Images in column (a) are an interferometric top view of a small portion of the array of cantilevers that was charged during this test. Each image in column (a) shows a line that locates the profile shown in the column (c) images. Images in column (b) are oblique three-dimensional reconstructions of the cantilevers, with the z dimension exaggerated in order to make visible the changes in the cantilever profiles during the charging experiment. Images in column (c) show the evolution of the profile of one cantilever during the charging test. Figure S2. Continuation of Fig. S1, cantilever height evolution during Charge 2 for the 200 μm cantilevers. Images are arranged in rows 6 through 10 corresponding to points 6 through 10 collected from the start through the finish of the Charge 2 test. Images in column (a) are an interferometric top view of a small portion of the array of cantilevers that was charged during this test. Each image in column (a) shows a line that locates the profile shown in the column (c) images. Images in column (b) are oblique three-dimensional reconstructions of the cantilevers, with the z dimension exaggerated in order to make visible the changes in the cantilever profiles during the charging experiment. Images in column (c) show the evolution of the profile of one cantilever during the charging test. Table S1. Data Recorded During Charge and Discharge Cycles. Table S2. Motion After Charge and Discharge Cycles. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 L. Baggetto, R. A. H. Niessen, F. Roozeboom, and P. H. L. Notten, Adv. Funct. Mater. 18, 1057 ( 2008).
- 2 S. Golmon, K. Maute, S.-H. Lee, and M. L. Dunn, Appl. Phys. Lett. 97, 033111 ( 2010).
- 3 U. Kasavajjula, C. Wang, and A. J. Appleby, J. Power Sources 163, 1003 ( 2007).
- 4 M. R. Zamfir, H. T. Nguyen, E. Moyen, Y. H. Lee, and D. Pribat, J. Mater. Chem. A 1, 9566 ( 2013).
- 5 M. N. Obrovac and V. L. Chevrier, Chem. Rev. 114, 11444 ( 2014).
- 6 M. Gu, Y. He, J. Zheng, and C. Wang, Nano Energy 17, 366 ( 2015).
- 7 M. Winter and J. O. Besenhard, Electrochim. Acta 45, 31 ( 1999).
- 8 C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, Nature Nanotechnol. 3, 31 ( 2008).
- 9 X. H. Liu and J. Y. Huang, Energy Environ. Sci. 4, 3844 ( 2011).
- 10 T. D. Hatchard and J. R. Dahn, J. Electrochem. Soc. 151, A838 ( 2004).
- 11 M. N. Obrovac and L. Christensen, Electrochem. Solid-State Lett. 7, A93 ( 2004).
- 12 J. Li and J. R. Dahn, J. Electrochem. Soc. 154, A156 ( 2007).
- 13 M. Uehara, J. Suzuki, K. Tamura, K. Sekine, and T. Takamura, J. Power Sources 146, 441 ( 2005).
- 14 A. Mukhopadhyay and B. W. Sheldon, Prog. Mater. Sci. 63, 58 ( 2014).
- 15 B. A. Boukamp, G. C. Lesh, and R. A. Huggins, J. Electrochem. Soc. 128, 725 ( 1981).
- 16 A. Mukhopadhyay and B. W. Sheldon, Prog. Mater. Sci. 63, 58 ( 2014).
- 17 Y. F. Gao, M. Cho, and M. Zhou, J. Mech. Sci. Technol. 27, 1205 ( 2013).
- 18 F. Fan, S. Huang, H. Yang, M. Raju, D. Datta, V. B. Shenoy, A. C. T. van Duin, S. Zhang, and T. Zhu, Model. Simul. Mater. Sci. Eng. 21, 074002 ( 2013).
- 19 G. Bucci, S. P. V. Nadirupalli, V. A. Sethuraman, A. F. Bower, and P. R. Guduru, J. Mech. Phys. Solids 62, 276 ( 2014).
- 20 G. Sikha, S. De, and J. Gordon, J. Power Sources 262, 514 ( 2014).
- 21 K.-J. Zhao, Y.-G. Li, and L. Brassart, Acta Mech. Sin. 29, 379 ( 2013).
- 22 J. E. Trevey, J. Wang, C. M. DeLuca, K. K. Maute, M. L. Dunn, S.-H. Lee, and V. M. Bright, Sens. Actuators A 167, 139 ( 2011).
- 23 C. M. DeLuca, K. Maute, and M. L. Dunn, J. Power Sources 196, 9672 ( 2011).
- 24 D. Molina Piper, T. A. Yersak, and S.-H. Lee, J. Electrochem. Soc. 160, A77 ( 2013).
- 25 V. A. Sethuraman, M. J. Chon, M. Shimshak, N. Van Winkle, and P. R. Guduru, Electrochem. Commun. 12, 1614 ( 2010).
- 26 S. K. Soni, B. W. Sheldon, X. Xiao, and A. Tokranov, Scr. Mater. 64, 307 ( 2011).
- 27 J. M. Rosolen and F. Decker, J. Electrochem. Soc. 143, 2417 ( 1996).
- 28 J. H. Yang, J. C. M. Chen, and M. M. C. Cheng, in: Proc. Transducers Barcelona, Spain, 16–20 June 2013, pp. 438–441.
- 29 J. Chen, A. K. Thapa, and T. A. Berfield, J. Power Sources 271, 406 ( 2014).
- 30 A. F. Bower, P. R. Guduru, and E. Chason, Int. J. Solids Struct. 69–70, 328 ( 2015).
- 31 Y. F. Gao, M. Cho, and M. Zhou, J. Mech. Phys. Solids 61, 579 ( 2013).
- 32 V. I. Levitas and H. Attariani, J. Mech. Phys. Solids 69, 84 ( 2014).
- 33 S. Kalnaus, K. Rhodes, and C. Daniel, J. Power Sources 196, 8116 ( 2011).
- 34 A. F. Bower, E. Chason, P. R. Guduru, and B. W. Sheldon, Acta Mater. 98, 229 ( 2015).
- 35 Z. Liu, J. Zhou, B. Chen, and J. Zhu, RSC Adv. 5, 74835 ( 2015).
- 36 P. P. R. M. L. Harks, F. M. Mulder, and P. H. L. Notten, J. Power Sources 288, 92 ( 2015).
- 37 V. A. Sethuraman, M. J. Chou, M. Shimshak, V. Srinivasan, and P. R. Guduru, J. Power Sources 195, 5062 ( 2010).
- 38 V. A. Sethuraman, N. Van Winkle, D. P. Abraham, A. F. Bower, and P. R. Guduru, J. Power Sources 206, 334 ( 2012).
- 39 L. A. Berla, S. W. Lee, Y. Cui, and W. D. Nix, J. Power Sources 273, 41 ( 2015).
- 40 S. T. Boles, C. V. Thompson, O. Kraft, and R. Mönig, Appl. Phys. Lett. 103, 263906 ( 2013).
- 41 X. H. Liu, J. W. Wang, S. Huang, F. Fan, X. Huang, Y. Liu, S. Kryluk, J. Yoo, S. A. Dayeh, A. V. Davydov, S. X. Mao, S. T. Picraux, S. Zhang, J. Li, T. Zhu, and J. Y. Huang, Nature Nanotechnol. 7, 749 ( 2012).
- 42 J. W. Wang, Y. He, F. Fan, X. H. Liu, S. Xia, Y. Liu, C. T. Harris, H. Li, J. Y. Huang, S. X. Mao, and T. Zhu, Nano Lett. 13, 709 ( 2013).
- 43 M. T. McDowell, S. W. Lee, J. T. Harris, B. A. Korgel, C. Wang, W. D. Nix, and Y. Cui, Nano Lett. 13, 758 ( 2013).
- 44 X. H. Liu, F. Fan, H. Yang, S. Zhang, J. Y. Huang, and T. Zhu, ACS Nano 7, 1495 ( 2013).
- 45 A. Timmons and J. R. Dahn, J. Electrochem. Soc. 154, A444 ( 2007).
- 46 R. B. Lewis, A. Timmons, R. E. Mar, and J. R. Dahn, J. Electrochem. Soc. 154, A213 ( 2007).
- 47 T. D. Hatchard, M. N. Obrovac, and J. R. Dahn, J. Electrochem. Soc. 152, A2335 ( 2005).
- 48 J. Gonzalez, K. Sun, M. Huang, J. Lambos, S. Dillon, and I. Chasiotis, J. Power Sources 269, 334 ( 2014).
- 49 A. Bosseboeuf and S. Petitgrand, Proc. SPIE 5145, 1 ( 2003).
- 50 A. Bosseboeuf and S. Petitgrand, J. Micromech. Microeng. 13, S23 ( 2003).
- 51 S. H. Pu, A. S. Holmes, and E. M. Yeatman, Microelectron. Eng. 112, 21 ( 2013).
- 52 P. Limthongkul, Y.-I. Jang, N. J. Dudney, and Y.-M. Chiang, J. Power Sources 119–121, 604 ( 2003).
- 53 B. Key, M. Morcrette, J.-M. Tarascon, and C. P. Grey, J. Am. Chem. Soc. 133, 503 ( 2011).
- 54 C. Yu, X. Li, T. Ma, J. Rong, R. Zhang, J. Shaffer, Y. An, Q. Liu, B. Wei, and H. Jiang, Adv. Energ. Mater. 2, 68 ( 2012).
- 55 Z. Cui, F. Gao, and J. Qu, J. Mech. Phys. Solids 61, 293 ( 2013).
- 56 R. Solecki and R. J. Conant, Advanced Mechanics of Materials ( Oxford University Press, New York, NY, 2003).
- 57
E. T. Kvamme,
J. C. Earthman,
D. B. Leviton, and
B. J. Frey,
Proc. SPIE
5904, 59040N (
2005).
10.1117/12.614180 Google Scholar
- 58 G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, 2nd ed. ( MIT Press, Cambridge, MA, 1971).
- 59 M. A. Hopcroft, W. D. Nix, and T. W. Kenny, J. Microelectromech. Syst. 19, 229 ( 2010).
- 60 J. C. Greenwood, J. Phys. E 21, 1114 ( 1988).
- 61 D. Maier-Schneider, A. Körprülülü, S. Ballhausen Holm, and E. Obermeier, J. Micromech. Microeng. 6, 436 ( 1996).
- 62 G. C. A. M. Janssen, M. M. Abdalla, F. van Keulen, B. R. Pujada, and B. van Venrooy, Thin Solid Films 517, 1858 ( 2009).
- 63 H. Kim, C.-Y. Chou, J. G. Ekerdt, and G. S. Hwang, J. Phys. Chem. C 115, 2514 ( 2011).
- 64 V. B. Shenoy, P. Johari, and Y. Qi, J. Power Sources 195, 6825 ( 2010).
- 65 S.-P. Kim, D. Datta, and V. B. Shenoy, J. Phys. Chem. C 118, 17247 ( 2014).
- 66 C. Spinella, S. Lombardo, and F. Priolo, J. Appl. Phys. 84, 5383 ( 1998).
- 67 J. S. Custer, M. O. Thompson, D. C. Jacobson, J. M. Poate, S. Roorda, W. C. Sinke, and F. Spaepan, Appl. Phys. Lett. 64, 437 ( 1997).
- 68 B. Jerliu, E. Hüger, L. Dörrer, B.-K. Seidlhofer, R. Steitz, V. Oberst, U. Geckle, M. Bruns, and H. Schmidt, J. Phys. Chem. C 118, 9395 ( 2014).