The impact of β-azido(or 1-piperidinyl)methylamino acids in position 2 or 3 on biological activity and conformation of dermorphin analogues
Maciej Maciejczyk
Department of Physics and Biophysics, Faculty of Food Science, University of Warmia and Mazury, Oczapowskiego 4, 10-719 Olsztyn, Poland
Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
contributed equally to this workSearch for more papers by this authorAnika Lasota
Institute of Organic Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
contributed equally to this workSearch for more papers by this authorOliwia Frączak
Institute of Organic Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
Search for more papers by this authorPiotr Kosson
Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 01-793 Warsaw, Poland
Search for more papers by this authorAleksandra Misicka
Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 01-793 Warsaw, Poland
Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
Search for more papers by this authorMichał Nowakowski
Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
Search for more papers by this authorAndrzej Ejchart
Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
Search for more papers by this authorCorresponding Author
Aleksandra Olma
Institute of Organic Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
Correspondence to: Aleksandra Olma, Institute of Organic Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland. E-mail: [email protected]Search for more papers by this authorMaciej Maciejczyk
Department of Physics and Biophysics, Faculty of Food Science, University of Warmia and Mazury, Oczapowskiego 4, 10-719 Olsztyn, Poland
Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
contributed equally to this workSearch for more papers by this authorAnika Lasota
Institute of Organic Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
contributed equally to this workSearch for more papers by this authorOliwia Frączak
Institute of Organic Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
Search for more papers by this authorPiotr Kosson
Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 01-793 Warsaw, Poland
Search for more papers by this authorAleksandra Misicka
Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 01-793 Warsaw, Poland
Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
Search for more papers by this authorMichał Nowakowski
Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
Search for more papers by this authorAndrzej Ejchart
Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
Search for more papers by this authorCorresponding Author
Aleksandra Olma
Institute of Organic Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
Correspondence to: Aleksandra Olma, Institute of Organic Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland. E-mail: [email protected]Search for more papers by this authorAbstract
The synthesis of new dermorphin analogues is described. The (R)-alanine or phenylalanine residues of natural dermorphin were substituted by the corresponding α-methyl-β-azidoalanine or α-benzyl-β-azido(1-piperidinyl)alanine residues. The potency and selectivity of the new analogues were evaluated by a competitive receptor binding assay in rat brain using [3H]DAMGO (a μ ligand) and [3H]DELT (a δ ligand). The most active analogue in this series, Tyr-(R)-Ala-(R)-α-benzyl-β-azidoAla-Gly-Tyr-Pro-Ser-NH2 and its epimer were analysed by 1H and 13C NMR spectroscopy and restrained molecular dynamics simulations. The dominant conformation of the investigated peptides depended on the absolute configuration around Cα in the α-benzyl-β-azidoAla residue in position 3. The (R) configuration led to the formation of a type I β-turn, whilst switching to the (S) configuration gave rise to an inverse β-turn of type I′, followed by the formation of a very short β-sheet. The selectivity of Tyr-(R)-Ala-(R) and (S)-α-benzyl-β-azidoAla-Gly-Tyr-Pro-Ser-NH2 was shown to be very similar; nevertheless, the two analogues exhibited different conformational preferences. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Supporting Information
Table S6. 13C (part A) and 15N (part B) chemical shifts (in ppm) of Tyr-(R)-Ala-(S)-α-benzyl-β-azidoAla-Gly-Tyr-Pro-Ser-NH2 (III) and Tyr-(R)-Ala-(R)-α-benzyl-β-azidoAla-Gly-Tyr-Pro-Ser-NH2 (IV) (Aaa = α-benzyl-β-azidoAla). t and c correspond to trans and cis isomers, respectively.
Filename | Description |
---|---|
psc2903-sup-0001-Supplementary.docxWord 2007 document , 37.5 KB | Supporting info item |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Montecucchi PC, De Castiglione R, Piani S, Gozzin L, Erspamer V. Amino acid composition and sequence of dermorphin, a novel opiate-like peptide from the skin extracts of Phyllomedusa sauvagei. Int. J. Pept. Prot. Res. 1981; 17: 275–279. DOI: 10.1111/j.1399-3011.1981.tb01993.x.
- 2Erspamer V. The opioid peptides of the amphibian skin. Int. J. Dev. Neurosci. 1992; 10: 3–30. DOI: 10.1016/0736-5748(92)90003-I.
- 3Melchiorri P, Negri L. The dermorphin peptide family. Gen. Pharmacol. 1996; 27: 1099–1107. DOI: 10.1016/0306-3623(95)02149-3.
- 4Ballet S, Misicka A, Kosson P, Lemieux C, Chung NN, Schiller PW, Lipkowski AW, Tourwé D. Blood-brain barrier penetration by two dermorphin tetrapeptide analogues: role of lipophilicity vs structural flexibility. J. Med. Chem. 2008; 51: 2571–2574. DOI: 10.1021/jm701404s.
- 5Bankowski K, Witkowska E, Michalak OM, Sidoryk K, Szymanek E, Antkowiak B, Paluch M, Filip KE, Cebrat M, Setner B, Szewczuk Z, Stefanowicz P, Cmoch P, Izdebski J. Synthesis, biological activity and resistance to proteolytic digestion of new cyclic dermorphin/deltorphin analogues. J. Eur. Med. Chem. 2013; 63: 457–467. DOI: 10.1016/j.ejmech.2013.02.019.
- 6Biondi L, Filira F, Giannini E, Gobbo M, Lattanzi R, Negri L, Rocchi R. Novel glycosylated [Lys7]-dermorphin analogues: synthesis, biological activity and conformational investigations. J. Pept. Sci. 2007; 13: 179–189. DOI: 10.1002/psc.829.
- 7Bozó B, Fülöp F, Tóth GK, Tóth G, Szücs M. Synthesis and opioid binding activity of dermorphin analogues containing cyclic β-amino acids. Neuropeptides 1997; 3: 367–372. DOI: 10.1016/S0143-4179(97)90073-1.
- 8Janecka A, Fichna J, Janecki T. Opioid receptors and their ligands. Curr. Top. Med. Chem. 2004; 4: 1–17. DOI: 10.2174/1568026043451618.
- 9Vandormael B, De Wachter R, Martins JC, Hendrickx PMS, Keresztes A, Ballet S, Mallareddy JR, Toth F, Toth G, Tourwe D. Asymmetric synthesis and conformational analysis by NMR spectroscopy and MD of Aba- and α-MeAba-containing dermorphin analogues. ChemMedChem 2011; 6: 2035–2047. DOI: 10.1002/cmdc.201100314.
- 10Tran TT, Treutlein H, Burgess AW. Designing amino acid residues with single-conformations. Protein Eng. Des. Sel. 2006; 19: 401–408. DOI: 10.1093/protein/gzl024.
- 11Oh K-I, Kim W, Joo C, Yoo D-G, Han H, Hwang G-S, Cho M. Azido gauche effect on the backbone conformation of β-azidoalanine peptides. J. Phys. Chem. B 2010; 114: 13021–13029. DOI: 10.1021/jp107359m.
- 12Lasota A, Frączak O, Leśniak A, Muchowska A, Lipkowski AW, Nowakowski M, Ejchart A, Olma A. Analogues of deltorphin I containing conformationally restricted amino acids in position 2: structure and opioid activity. J. Pept. Sci. 2015; 21: 120–125. DOI: 10.1002/psc.2738.
- 13Lasota A, Frączak O, Muchowska A, Nowakowski M, Maciejczyk M, Ejchart A, Olma A. Synthesis, biological activity and NMR-based structural studies of deltorphin I analogues modified in message domain with a new α,α-disubstituted glycines. CBDD 2016. DOI: 10.1111/cbdd.12730.
10.1111/cbdd.12730 Google Scholar
- 14Kudaj A, Olma A. An efficient synthesis of optically pure α-alkyl-β-azido- and α-alkyl-β-aminoalanines via ring opening of 3-amino-3-alkyl-2-oxetanones. Tetrahedron Lett. 2007; 48: 6794–6797.
- 15Olma A, Łachwa M, Lipkowski AW. The biological consequences of replacing hydrophobic amino acids in deltorphin I with amphiphilic α-hydroxymethylamino acids. J. Pept. Res. 2003; 62: 45–52. DOI: 10.1034/j.1399-3011.2003.00067.x.
- 16Misicka A, Lipkowski AW, Horvath R, Davis P, Kramer TH, Yamamura HI, Hruby VJ. Topographical requirements for delta opioid ligands: common structural features of dermenkephalin and deltorphin. Life Sci. 1992; 51: 1025–32. DOI: 10.1016/0024-3205(92)90501-F.
- 17Fichna J, do-Rego JC, Costentin J, Chung NN, Schiller PW, Kosson P, Janecka A. Opioid receptor binding and in vivo antinociceptive activity of position 3 substituted morphiceptin analogs. Biochem. Biophys. Res. Commun. 2004; 320: 531–536. DOI: 10.1016/j.bbrc.2004.05.202.
- 18Lazarus LH, Guglietta A, Wilson WE, Irons BJ, de Castiglione R. Dimeric dermorphin analogues as μ-receptor probes on rat brain membranes. Correlation between central mu-receptor potency and suppression of gastric acid secretion. J. Biol. Chem. 1989; 264: 354–362.
- 19Raiford DS, Fisk CL, Becker ED. Calibration of methanol and ethylene glycol nuclear magnetic resonance thermometers. Anal. Chem. 1979; 51: 2050–2051. DOI: 10.1021/ac50048a040.
- 20Braunschweiler L, Ernst RR. Coherence transfer by isotropic mixing: application to proton correlation spectroscopy. J. Magn. Reson. 1983; 53: 521–528.
- 21Bax A, Davis DG. Practical aspects of two-dimensional transverse NOE spectroscopy. J. Magn. Reson. 1985; 63: 207–213. DOI: 10.1016/0022-2364(85)90171-4.
- 22Bodenhausen G, Ruben DJ. Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chem. Phys. Lett. 1980; 69: 185–189. DOI: 10.1016/0009-2614(80)80041-8.
- 23Marion D, Ikura M, Tschudin R, Bax A. Rapid recording of 2D NMR spectra without phase cycling. Application to the study of hydrogen exchange in proteins. J. Magn. Reson. 1989; 85: 393–399. DOI: 10.1016/0022-2364(89)90152-2.
- 24Hwang TL, Shaka AJ. Water suppression that works. Excitation sculping using arbitrary waveforms and pulsed field gradients. J. Magn. Reson. 1995; A112: 275–279. DOI: 10.1006/jmra.1995.1047.
- 25Wishart DS, Bigam CG, Yao CG, Abildgaad F, Dyson HJ, Oldfield E, Markley JL, Sykes BD. 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J. Biomol. NMR 1995; 6: 135–140. DOI: 10.1007/BF00211777.
- 26Goddard TD, Kneller DG. SPARKY3, University of California, San Francisco.
- 27Neuhaus D, Williamson MP. The Nuclear Overhauser Effect in Structural and Conformational Analysis. VCH Publishers: Inc. Weinheim, 1989.
- 28Case DA, Darden TA, Cheatham III TE. et al, AMBER 12, University of California, San Francisco, 2012.
- 29Pieffet G, Petukhov PA. Parameterization of aromatic azido group: application for photoaffinity probe in molecular dynamics studies. J. Mol. Model. 2009; 15: 1291–1297.
- 30Hawkins GD, Cramer CJ, Truhlar DG. Pairwise solute descreening of solute charges from a dielectric medium. Chem. Phys. Lett. 1995; 246: 122–129.
- 31Hawkins GD, Cramer CJ, Truhlar DG. Parametrized models of aqueous free energies of solvation based on pairwise descreening of solute atomic charges from a dielectric medium. J. Phys. Chem. 1996; 100: 19824–19839.
- 32Tsui V, Case DA. Theory and applications of the generalized born solvation model in macromolecular simulations. Biopolymers (Nucl. Acid Sci.) 2001; 56: 275–291.
- 33Shao J, Tanner SW, Thompson N, Cheatham TE, III. Clustering molecular dynamics trajectories: 1. Characterizing the performance of different clustering algorithms. J. Chem. Theory Comput. 2007; 3: 2312–2334.
- 34Schubert M, Labudde D, Oschkinat H, Schmieder P. A software tool for the prediction of Xaa-Pro peptide bond conformations in proteins based on 13C chemical shift statistics. J. Biomol. NMR 2002; 24: 149–154.