Constructing thioether-tethered cyclic peptides via on-resin intra-molecular thiol–ene reaction
Bingchuan Zhao
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
Search for more papers by this authorQingzhou Zhang
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Zigang Li
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
Correspondence to: Zigang Li, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China. E-mail: [email protected]Search for more papers by this authorBingchuan Zhao
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
Search for more papers by this authorQingzhou Zhang
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Zigang Li
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 China
Correspondence to: Zigang Li, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China. E-mail: [email protected]Search for more papers by this authorAbstract
Thiol–ene reactions have been used in a variety of applications that mostly involve an inter-molecular pathway. Herein, we report a facile method to construct thioether-tethered cyclic peptides via an intra-molecular thiol–ene reaction. This reaction is efficient, selective, and has good residue compatibility. Short peptides with thioether tethers were constructed and were used to construct longer cyclic peptides. This synthetic method may be useful for constructing bioactive peptides. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Supporting Information
Filename | Description |
---|---|
psc2902-sup-0001-Supplementary.pdfPDF document, 7.9 MB |
Supporting info item |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Higueruelo A, Jubb H, Blundell T. Protein–protein interactions as druggable targets: recent technological advances. Curr. Opin. Pharmacol. 2013; 13: 791–796.
- 2Glas A, Bier D, Hahne G, Rademacher C, Ottmann C, Grossmann TN. Constrained peptides with target-adapted cross-links as inhibitors of a pathogenic protein–protein interaction. Angew. Chem. Int. Ed. 2014; 53: 2489–2493.
- 3Hill TA, Shepherd NE, Diness F, Fairlie DP. Constraining cyclic peptides to mimic protein structure motifs. Angew. Chem. Int. Ed. 2014; 53: 13020–13041.
- 4Khakshoor O, Nowick J. Artificial beta-sheets: chemical models of beta-sheets. Curr. Opin. Chem. Bio. 2008; 12: 722–729.
- 5Lau YH, de Andrade P, Wu Y, Spring DR. Peptide stapling techniques based on different macrocyclisation chemistries. Chem. Soc. Rev. 2015; 44: 91–102.
- 6Kessler H. Conformation and biological activity of cyclic peptides. Angew. Chem. Int. Ed. 1982; 21: 512–523.
- 7Tian Y, Li J, Zhao H, Zeng X, Wang D, Liu Q, Niu X, Huang X, Xu N, Li Z. Stapling of unprotected helical peptides via photo-induced intramolecular thiol–yne hydrothiolation. Chem. Sci. 2016; 7: 3325–3330.
- 8Freidinger RM, Veber DF, Perlow DS, Brooks JR, Saperstein R. Bioactive conformation of luteinizing hormone-releasing hormone: evidence from a conformationally constrained analog. Science 1980; 210: 656–658.
- 9Ösapay G, Prokai L, Kim H-S, Medzihradszky KF, Coy DH, Liapakis G, Reisine T, Melacini G, Zhu Q, Wang SHH, Mattern R-H, Goodman M. Lanthionine-somatostatin analogs: synthesis, characterization, biological activity, and enzymatic stability studies. J. Med. Chem. 1997; 40: 2241–2251.
- 10Veber DF, Freidinger RM, Perlow DS, Paleveda WJ, Holly FW, Strachan RG, Nutt RF, Arison BH, Homnick C, Randall WC, Glitzer MS, Saperstein R, Hirschmann R. A potent cyclic hexapeptide analogue of somatostatin. Nature 1981; 292: 55–58.
- 11Biron E, Chatterjee J, Ovadia O, Langenegger D, Brueggen J, Hoyer D, Schmid HA, Jelinek R, Gilon C, Hoffman A, Kessler H. Improving oral bioavailability of peptides by multiple N-methylation: somatostatin analogues. Angew. Chem. Int. Ed. 2008; 47: 2595–2599.
- 12Shepherd N, Hoang H, Abbenante G, Fairlie D. Single turn peptide alpha helices with exceptional stability in water. J. Am. Chem. Soc. 2005; 127: 2974–2983.
- 13Meutermans WDF, Golding SW, Bourne GT, Miranda LP, Dooley MJ, Alewood PF, Smythe ML. Synthesis of difficult cyclic peptides by inclusion of a novel photolabile auxiliary in a ring contraction strategy. J. Am. Chem. Soc. 1999; 121: 9790–9796.
- 14Blackwell H, Sadowsky J, Howard R, Sampson J, Chao J, Steinmetz W, O'Leary D, Grubbs R. Ring-closing metathesis of olefinic peptides: design, synthesis, and structural characterization of macrocyclic helical peptides. J. Org. Chem. 2001; 66: 5291–5302.
- 15Jackson DY, King DS, Chmielewski J, Singh S, Schultz PG. General approach to the synthesis of short. alpha-helical peptides. J. Am. Chem. Soc. 1991; 113: 9391–9392.
- 16Mahon AB, Arora PS. Design, synthesis and protein-targeting properties of thioether-linked hydrogen bond surrogate helices. Chem. Commun. 2012; 48: 1416–1418.
- 17Helen EB, Robert HG. Highly efficient synthesis of covalently cross-linked peptide helices by ring-closing metathesis. Angew. Chem. Int. Ed. 1998; 37: 3281–3284.
- 18Schafmeister CE, Po J, Verdine GL. An All-hydrocarbon cross-linking system for enhancing the helicity and metabolic stability of peptides. J. Am. Chem. Soc. 2000; 122: 5891–5892.
- 19Galande AK, Spatola AF. A facile method for the direct synthesis of lanthionine containing cyclic peptides. Lett. Pept. Sci. 2002; 8: 247–251.
- 20Jacob C. A scent of therapy: pharmacological implications of natural products containing redox-active sulfur atoms. Nat. Prod. Rep. 2006; 23: 851–863.
- 21Cui H-K, Guo Y, He Y, Wang F-L, Chang H-N, Wang Y-J, Wu F-M, Tian C-L, Liu L. Diaminodiacid-based solid-phase synthesis of peptide disulfide bond mimics. Angew. Chem. Int. Ed. 2013; 52: 9558–9562.
- 22Souers AJ, Virgilio AA, Rosenquist Å, Fenuik W, Ellman JA. Identification of a potent heterocyclic ligand to somatostatin receptor subtype 5 by the synthesis and screening of β-turn mimetic libraries. J. Am. Chem. Soc. 1999; 121: 1817–1825.
- 23Kelleman A, Mattern R-H, Pierschbacher MD, Goodman M. Incorporation of thioether building blocks into an αvβ3-specific RGD peptide: synthesis and biological activity. Pept. Sci. 2003; 71: 686–695.
- 24Heinis C, Rutherford T, Freund S, Winter G. Phage-encoded combinatorial chemical libraries based on bicyclic peptides. Nat. Chem. Biol. 2009; 5: 502–507.
- 25Guo Y, Sun D-M, Wang F-L, He Y, Liu L, Tian C-L. Diaminodiacid bridges to improve folding and tune the bioactivity of disulfide-rich peptides. Angew. Chem. Int. Ed. 2015; 54: 14276–14281.
- 26Pattabiraman V, McKinnie S, Vederas J. Solid-supported synthesis and biological evaluation of the lantibiotic peptide bis(desmethyl) lacticin 3147 A2. Angew. Chem. Int. Ed. 2008; 47: 9472–9475.
- 27Knerr P, van der Donk W. Chemical synthesis and biological activity of analogues of the lantibiotic epilancin 15X. J. Am. Chem. Soc. 2012; 134: 7648–7651.
- 28Fukase K, Kitazawa M, Sano A, Shimbo K, Fujita H, Horimoto S, Wakamiya T, Shiba T. Total synthesis of peptide antibiotic nisin. Tetrahedron Lett. 1988; 29: 795–798.
- 29Osapay G, Goodman M. New application of peptide cyclization on an oxime resin (the PCOR method): preparation of lanthionine peptides. J. Chem. Soc., Chem. Commun. 1993; (21): 1599–1600 DOI: 10.1039/C39930001599.
- 30Tabor AB. The challenge of the lantibiotics: synthetic approaches to thioether-bridged peptides. Org. Biomol. Chem. 2011; 9: 7606–7628.
- 31Pulka-Ziach K, Pavet V, Chekkat N, Estieu-Gionnet K, Rohac R, Lechner M-C, Smulski CR, Zeder-Lutz G, Altschuh D, Gronemeyer H, Fournel S, Odaert B, Guichard G. Thioether analogues of disulfide-bridged cyclic peptides targeting death receptor 5: conformational analysis, dimerisation and consequences for receptor activation. Chembiochem 2015; 16: 293–301.
- 32Ross AC, McKinnie SM, Vederas JC. The synthesis of active and stable diaminopimelate analogues of the lantibiotic peptide lactocin S. J. Am. Chem. Soc. 2012; 134: 2008–2011.
- 33Dekan Z, Vetter I, Daly N, Craik D, Lewis R, Alewood P. α-Conotoxin ImI incorporating stable cystathionine bridges maintains full potency and identical three-dimensional structure. J. Am. Chem. Soc. 2011; 133: 15866–15869.
- 34Galande AK, Trent JO, Spatola AF. Understanding base-assisted desulfurization using a variety of disulfide-bridged peptides. Pept. Sci. 2003; 71: 534–551.
- 35Bernardes GJL, Grayson EJ, Thompson S, Chalker JM, Errey JC, El Oualid F, Claridge TDW, Davis BG. From disulfide- to thioether-linked glycoproteins. Angew. Chem. Int. Ed. 2008; 47: 2244–2247.
- 36Aimetti A, Shoemaker R, Lin C-C, Anseth K. On-resin peptide macrocyclization using thiol–ene click chemistry. Chem. Commun. 2010; 46: 4061–4063.
- 37Hoppmann C, Kuhne R, Beyermann M. Intramolecular bridges formed by photoswitchable click amino acids. Beilstein J. Org. Chem. 2012; 8: 884–889.
- 38Hoppmann C, Schmieder P, Heinrich N, Beyermann M. Photoswitchable click amino acids: light control of conformation and bioactivity. Chembiochem 2011; 12: 2555–2559.
- 39Wang Y, Chou DH-C. A thiol–ene coupling approach to native peptide stapling and macrocyclization. Angew. Chem. Int. Ed. 2015; 54: 10931–10934.
- 40Dondoni A, Marra A. Recent applications of thiol–ene coupling as a click process for glycoconjugation. Chem. Soc. Rev. 2012; 41: 573–586.
- 41Hoyle CE, Bowman CN. Thiol–ene click chemistry. Angew. Chem. Int. Ed. 2010; 49: 1540–1573.
- 42Dondoni A. The emergence of thiol–ene coupling as a click process for materials and bioorganic chemistry. Angew. Chem. Int. Ed. 2008; 47: 8995–8997.
- 43Hagberg EC, Malkoch M, Ling Y, Hawker CJ, Carter KR. Effects of modulus and surface chemistry of thiol–ene photopolymers in nanoimprinting. Nano Lett. 2007; 7: 233–237.
- 44Killops KL, Campos LM, Hawker CJ. Robust, efficient, and orthogonal synthesis of dendrimers via thiol–ene “click” chemistry. J. Am. Chem. Soc. 2008; 130: 5062–5064.
- 45Natarajan LV, Shepherd CK, Brandelik DM, Sutherland RL, Chandra S, Tondiglia VP, Tomlin D, Bunning TJ. Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol−ene photopolymerization. Chem. Mater. 2003; 15: 2477–2484.
- 46Campos LM, Meinel I, Guino RG, Schierhorn M, Gupta N, Stucky GD, Hawker CJ. Highly versatile and robust materials for soft imprint lithography based on thiol–ene click chemistry. Adv. Mater. 2008; 20: 3728–3733.
- 47Floyd N, Vijayakrishnan B, Koeppe JR, Davis BG. Thiyl glycosylation of olefinic proteins: S-linked glycoconjugate synthesis. Angew. Chem. Int. Ed. 2009; 48: 7798–7802.
- 48Dondoni A, Massi A, Nanni P, Roda A. A new ligation strategy for peptide and protein glycosylation: photoinduced thiol–ene coupling. Chem.–Eur. J. 2009; 15: 11444–11449.
- 49Zhang Q, Shi X, Jiang Y, Li Z. Influence of α-methylation in constructing stapled peptides with olefin metathesis. Tetrahedron 2014; 70: 7621–7626.
- 50Kim Y-W, Grossmann T, Verdine G. Synthesis of all-hydrocarbon stapled α-helical peptides by ring-closing olefin metathesis. Nat. Protoc. 2011; 6: 761–771.
- 51Phillips C, Roberts L, Schade M, Bazin R, Bent A, Davies N, Moore R, Pannifer A, Pickford A, Prior S, Read C, Scott A, Brown D, Xu B, Irving S. Design and structure of stapled peptides binding to estrogen receptors. J. Am. Chem. Soc. 2011; 133: 9696–9699.